CS769 Advanced NLP Multimodal Machine Learning: Vision-Language

Junjie Hu

Slides adapted from LP Morency <u>https://junjiehu.github.io/cs769-spring23/</u>

Goal for Today

- What is Multimodal?
 - Historical view, multimodal vs multimedia
- Core technical challenges
 - Representation learning, translation, alignment, fusion, and co-learning
- Recent pre-trained V+L models
 - CLIP
 - DALL-E

Multimodal Machine Learning

Multimodal Communicative Behaviors

Verbal

Lexicon Words

> Syntax Part - of - speech Dependencies

Pragmatics Discourse acts

Vocal

Prosody Intonation Voice quality Vocal expressions Laughter, moans

Visual

Gestures Head gestures Eye gestures Arm gestures

> **Body language** Body posture Proxemics

Eye contact Head gaze Eye gaze

Facial expressions FACS action units Smile, frowning

Examples of Modalities

- Natural language (both spoken or written)
- Visual (from images or videos)
- Auditory (including voice, sounds, and music)
- Haptics / touch
- Smell, taste and self-motion
- Physiological signals
 - Electrocardiogram (ECG), skin conductance
- Other modalities
 - Infrared images, depth images, fMRI

Prior Research on "Multimodal"

- Four eras of multimodal research
 - The "behavioral" era (1970s until late 1980s)
 - The "computational" era (late 1980s until 2000)
 - The "interaction" era (2000 2010)
 - The "deep learning" era (2010s until ...)

The McGurk Effect (1976)

McGurk & MacDonald, 1976. Hearing lips and seeing voices, Nature

The "Computational" Era (Late 1980s until 2000)

Audio-Visual Speech Recognition (AVSR)

Core Technical Challenges

Core Challenges in "Deep" Multimodal ML (Baltrusaitis et al. 2017)

- Representation
- Alignment
- Fusion
- Translation
- Co-Learning

These challenges are non-exclusive.

Baltrusaitis et al. 2017. Multimodal Machine Learning: A Survey and Taxonomy

Core Challenge 1: Representation

• **Definition**: Learning how to represent and summarize multimodal data in a way that exploits the complementarity and redundancy.

A Joint representations:

Joint Multimodal Representations

Joyful tone

Joint Multimodal Representations

- Audio-visual speech recognition (Ngiam et al. 2011)
 - Bimodal Deep Belief Network
- Image captioning (Srivastava, Salahutdinov, 2012)
 - Multimodal Deep Boltzmann Machine
- Audio-visual emotion recognition (Kim et al. 2013)
 - Deep Boltzmann Machine

Deep Multimodal Autoencoder

- Bimodal auto-encoder
 - Used for audio-visual speech recognition
- Individual modalities can be pretrained
 - RBMs
 - Denoising Autoencoders
- Train the model to reconstruct the other modality
 - Use both
 - Remove audio
 - Remove video

Multimodal Vector Space Arithmetic

- Obtain a vector by the image embedding of a blue car - word embedding of "blue" + word embedding of "red"
- Retrieve the nearest images

Kiros et al. 2014. Unifying Visual-Semantic Embeddings with Multimodal Neural Language models.

Core Challenge 1: Representation

• **Definition**: Learning how to represent and summarize multimodal data in a way that exploits the complementarity and redundancy.

A Joint representations:

B Coordinated representations:

Coordinated Representation: Deep CCA

• Learn linear projections that are maximally correlated:

 $(\theta_1^*, \theta_2^*) = \operatorname*{argmax}_{(\theta_1, \theta_2)} \operatorname{corr}(f_1(X_1; \theta_1), f_2(X_2; \theta_2)).$

where f_1 and f_2 are two encoders (e.g., for texts, images), corr computes the correlation between two representations.

Core Challenge 2: Alignment

 Definition: Identify the direct relations between (sub)elements from two or more different modalities

A Explicit Alignment

The goal is to directly find correspondences between elements of different modalities

B Implicit Alignment

Uses internally latent alignment of modalities in order to better solve a different problem

Example: Temporal Sequence Alignment

- Application:
 - Re-aligning asynchronous data
 - Finding similar data across modalities
 - Event reconstruction from multiple sources

Implicit Alignment

• Vision-language alignment, a.k.a. visual grounding.

Karpathy et al. 2014 Deep Fragment Embeddings for Bidirectional Image Sentence Mapping

Implicit Alignment

- Use object detection (RCNN) tools to extract bounding boxes, and encode each bounding box
- Use dependency parsing to extract dependency relations (Relation-head-tail triple), and encode each relation
- Compute the similarity and optimize the alignment objectives.

Karpathy et al. 2014 Deep Fragment Embeddings for Bidirectional Image Sentence Mapping

Core Challenge 3: Fusion

• **Definition**: To join information from two or more modalities to perform a prediction task.

A Model-Agnostic Approaches

Core Challenge 4: Translation

 Definition: Process of changing data from one modality to another, where the translation relationship can often be open-ended or subjective

A Example-based

A Model-based

Text+Audio to Vision Translation

Marsella et al., Virtual character performance from speech, SIGGRAPH/ Eurographics Symposium on Computer Animation, 2013

Core Challenge 5: Co-Learning

• **Definition**: Transfer knowledge between modalities, including their representations and predictive models.

Core Challenge 5: Co-Learning

• Three data settings.

Taxonomy of Multimodal Research

Representation

- Joint
 - o Neural networks
 - o Graphical models
 - o Sequential
- Coordinated
 - o Similarity
 - o Structured

Translation

- Example-based
 - o **Retrieval**
 - o **Combination**
- Model-based
 - o Grammar-based

- o Encoder-decoder
- Online prediction

Alignment

- Explicit
 - o Unsupervised
 - o Supervised
- Implicit
 - o Graphical models
 - o Neural networks

Fusion

- Model agnostic
 - o Early fusion
 - o Late fusion
 - o Hybrid fusion

- Model-based
 - o Kernel-based
 - o Graphical models
 - Neural networks

Co-learning

- Parallel data
 - o Co-training
 - o Transfer learning
- Non-parallel data
 - Zero-shot learning
 - Concept grounding
 - Transfer learning
- Hybrid data
 - Bridging

Multimodal Applications

	CHALLENGES						
APPLICATIONS	REPRESENTATION	TRANSLATION	Fusion	ALIGNMENT	Co-learning		
Speech Recognition and Synthesis							
Audio-visual Speech Recognition	\checkmark			\checkmark	\checkmark		
(Visual) Speech Synthesis	\checkmark	\checkmark					
Event Detection							
Action Classification	\checkmark				\checkmark		
Multimedia Event Detection	\checkmark				\checkmark		
Emotion and Affect							
Recognition	\checkmark			\checkmark	\checkmark		
Synthesis	\checkmark	\checkmark					
Media Description							
Image Description	\checkmark	\checkmark		\checkmark	\checkmark		
Video Description	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Visual Question-Answering	\checkmark		\checkmark	\checkmark	\checkmark		
Media Summarization	\checkmark	\checkmark	\checkmark				
Multimedia Retrieval							
Cross Modal retrieval	\checkmark	\checkmark		\checkmark	\checkmark		
Cross Modal hashing	\checkmark				\checkmark		

Recent Pre-trained Vision-Language Models

CLIP

 Pre-train V+L models using image captioning data (i.e., image-text pairs) by contrastive loss

(1) Contrastive pre-training

Radford et al. 2021 Learning Transferable Visual Models From Natural Language Supervision

CLIP: Zero-shot Image Classification

• Use a template + class label string to create a sentence

(2) Create dataset classifier from label text

CLIP: pseudocode

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t - learned temperature parameter
```

```
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) #[n, d_t]
```

```
# joint multimodal embedding [n, d_e]
I_e = l2_normalize(np.dot(I_f, W_i), axis=1)
T_e = l2_normalize(np.dot(T_f, W_t), axis=1)
```

```
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
```

```
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
```

Efficiency of BoW Representations

 CLIP w/ BoW representations work better than transformer language model on zero-shot ImageNet prediction

Zero-shot Image Classification

 Zero-shot CLIP classifier outperforms a fully supervised linear classifier fitted on ResNet-50 features on 16 out of 27 datasets (including ImageNet).

Few-shot Performance

- Zero-shot CLIP outperforms other few-shot baselines
- Few-shot CLIP further improves w/ a few labeled data.

DALL-E: Text-to-Image Generation

TEXT PROMPT an illustration of a baby daikon radish in a tutu walking a dog

AI-GENERATED IMAGES

TEXT PROMPT a store front that has the word 'openai' written on it....

AI-GENERATED IMAGES

TEXT & IMAGE the exact same cat on the top as a sketch on the bottom PROMPT

AI-GENERATED IMAGES

DALL-E

- **Stage 1**: Train a discrete VAE on **only images** (encode RGB images to image tokens (latent variable), and decode image tokens back to RGB images)
- Stage 2: Train a language model (LM) to generate a combined sequence of both text tokens and image tokens

DALL-E: dVAE Training

• **Stage 1**: Train a discrete variational autoencoder (dVAE or VQ-VAE, Oord et al. 2018) to compress each 256x256 RGB image into 32x32 grid of image tokens.

Each image token finds the nearest vector from a 8196 codebook (vocabulary)

Ramesh et al. 2021. Zero-shot Text-to-Image Generation Oord et al. 2018. Neural Discrete Representation Learning

DALL-E: dVAE Training

 Stage 1: Train a discrete variational autoencoder (dVAE or VQ-VAE, Oord et al. 2018) to compress each 256x256 RGB image into 32x32 grid of image tokens.

Each image token finds the nearest vector from a 8196 codebook (vocabulary)

Maximize Evidence Lower Bound

DALL-E: Language Model Training

Stage 2: Concatenate up to 256 text tokens with the 32x32 (=1024) image tokens, and train an autoregression transformer to model the joint distribution of the text and image tokens.

Autoregressive LM training: Maximum Likelihood Estimation

$$\max_{\psi} p_{\psi}(y,z)$$

Ramesh et al. 2021. Zero-shot Text-to-Image Generation

DALL-E: Language Model Training

Representation of the combined text + image token sequence

start of text text embed 0	text embed 1	text embed 2	pad embd 0	pad embd 1	start of image	image embd 0	image embd 0
text pos embd 0 text pos embd 1	text pos embd 2	text pos embd 3			row embd 0	row embd 0	row embd 0
					col embd 0	col embd 1	col embd 2

state 0 state 1 state 2 state 3	state 4 state 5	state 6 state 7	state 8
---	-----------------	-----------------	---------

DALL-E: Stage 1

Encoder $q_{\phi}(y, z \mid x)$

Decoder $p_{\theta}(x \mid y, z)$

Ramesh et al. 2021. Zero-shot Text-to-Image Generation

DALL-E: Stage 2

Encoder $q_{\phi}(y, z | x)$

Decoder $p_{\theta}(x \mid y, z)$

Ramesh et al. 2021. Zero-shot Text-to-Image Generation

DALL-E: Overall Training Procedure

Maximize Evidence Lower Bound (ELB)— LVM lecture

$$\ln p_{\theta,\psi}(x,y) \geq \mathbb{E} \left(\ln p_{\theta}(x \mid y, z) - \right. \\ \left. \beta D_{\mathrm{KL}}(q_{\phi}(y, z \mid x), p_{\psi}(y, z)) \right),$$

Stage 1 updates p_{θ} , q_{ϕ} and fixes p_{ψ} Stage 2 fixes p_{θ} , q_{ϕ} and updates p_{ψ}

- *x*: the RGB image (256x256)
- *z*: the 32x32 (=1024) image tokens
- y: the text up to 256 tokens
- q_{ϕ} is the distribution over text tokens and the 32x32 image tokens generated by dVAE encoder given the RGB image x
- p_{θ} is the distribution over the RGB image generated by dVAE decoder given the image tokens and text tokens
- p_{ψ} is the prior distribution over the text and image tokens.

DALL-E: Test Time

- Given a text prompt y, use the prior distribution (LM) to sample a sequence of 1028 image tokens
- Re-order 1028 image tokens to 32x32 shape
- Use dVAE's decoder to generate a RGB image from the image tokens.

Text-to-Image Generation

a very cute cat laying by a big bike.

china airlines plain on the ground at an airport with baggage cars nearby.

a table that has a train model on it with other cars and things

a living room with a tv on top of a stand with a guitars sitting next to

a couple of people are sitting on a wood bench

a very cute giraffe making a funny face.

a kitchen with a fridge, stove and sink

a group of animals are standing in the snow.

DF-GAN

DM-GAN

Malala

Human Eval on "Realism" and "Accuracy"

• DALL-E outperforms DF-GAN

Sample, then Re-rank

 Sample K (e.g., K=1, 8, 64, 512) images from DALL-E, re-rank by CLIP, and pick the best output.

a group of urinals is near the trees

a crowd of people standing on top of a beach.

a woman and a man standing next to a bush bench.

a bathroom with two sinks, a cabinet and a bathtub.

a man riding a bike down a street past a young man.

a truck stopped at an intersection where construction barriers are up.

a man sitting on a bench next to a slug.

a car covered in various empty toothpaste tubes.

best of 512

More Text-to-Image Generation Models

• Stable diffusion: Latent diffusion model

https://jalammar.github.io/illustrated-stable-diffusion/

More Text-to-Image Generation Models

• Stable diffusion: Add noise & remove noise

Questions?