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Goal for Today
• Background & Parallel Corpus 

• Noisy Channel MT (SMT, non-parametric models)  

• Lexical Translation 

• Word Alignment 

• Neural Machine Translation (parametric models)  

• Architecture: LSTM, CNN, Transformer 

• Multilingual NMT 

• Hybrid MT (non-parametric + parametric MT)  

• Interpolation / Retrieval MT 

• Prompt MT 

• Open Research Problems on NMT
2



One naturally wonders if the 
problem of translation could 
conceivably be treated as a 

problem in cryptography. When 
I look at an article in Russian, I 
say: ‘This is really written in 

English, but it has been coded 
in some strange symbols. I 

will now proceed to decode.’ 

Warren Weaver to Norbert Wiener, March, 1947
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• We are given a corpus of sentence pairs in two 
languages to train our machine translation models. 

• Source language is also called foreign language, 
denoted as f. 

• Conventionally (in earlier studies before NMT) 
target language is usually referred to English, 
denoted as e. 

Parallel Corpus
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Parallel Corpus
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Parallel Corpus

6



Parallel Corpus
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Parallel Corpus
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Parallel Corpus

Egyptian

Greek
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WMT
• Annual conference for Machine Translation (2006-now) 

• Many shared tasks: 

• Translation tasks: News, Biomedical articles, 
Translate similar languages, low-resource MT, large-
scale multilingual MT, triangular MT, efficiency, 
terminology, unsupervised MT, lifelong learning 

• Evaluation tasks: quality estimation, metrics 

• Other tasks: automatic post-editing

https://www.statmt.org/wmt21/
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OPUS Parallel Corpus
• OPUS (Tiedemann 2012) is a growing collection of 

translated texts from the web. 
• Preprocessed parallel texts in tmx, moses format

https://opus.nlpl.eu/
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Noisy Channel MT 
(Statistic Machine Translation)
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-to-  Translationf e
• We want a model of p(e | f )

Confusing foreign sentencePossible English sentence
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Noisy Channel MT

p(e) e

p( f |e)

f
“English” “Foreign”

Decode

channel

• Speaker: Have an English sentence in mind, encrypt it through a 
noisy channel, and speak the sentence in a foreign language 

• Listener: Decode what they hear to the original English sentence.
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Noisy Channel MT

Language Model (Backward) Translation Model 
i.e., Noisy Channel

(Forward) Translation Model

What’s the benefit of the Noisy Channel decomposition in 
stead of modeling the forward translation directly? 
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Noisy Channel Division of Labor
• Language model  

• Is the translation fluent, grammatical, and idiomatic? 

• Use any LMs trained on large datasets 

• Translation model  

• (Backward) translation probability 

• Ensures adequacy of translation

p(e)

p( f |e)
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Training Noisy Channel MT
• Training LMs is simple (refer to the LM lecture) 

• Estimating  is a bit harder 

• ie voudrais un peu de frommage          

• I would like some cheese                   0.4 

• I would like a little of cheese              0.5 

• There is no train to Barcelona            >0.00001

p( f |e)

f = p( f |e)

e1 =

e2 =

e3 =
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Estimate Channel Translation Model
• How do we parameterize ?p( f |e)

p( f |e) =
count( f, e)
count(e)

?

• There are a lot of possible sentences  
• We can only count the sentences in our training data 
• This won’t generalize to new inputs 

• Can we break the sentence probability into lexical 
(word-level) translation probability?
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Lexical Translation
• How do we translate a word? Look it up in a dictionary! 

• e.g., Haus (German): house, home, shell, household

Translation Count

house 5000

home 2000

shell 100

household 80

Maximum Likelihood Estimation (MLE)
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Lexical Translation
• Goal: a model , where  and 

, assuming that there is some distribution  that 
models ’s length conditioned on ’s length. 

• Lexical translation makes the following assumptions: 

1. Each word  is generated from exactly one word in  

2. Thus, we have a latent alignment  that indicates which English 
word  generates . 

3. Given the alignments , translation decisions are conditionally 
independent of each other and depend only on the aligned English 
word   

p(f |e, m) e = ⟨e1, e2, …, el⟩
f = ⟨ f1, f2, …, fm⟩ p(m | l)

f e

fi e

ai
eai

fi

a

eai
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Lexical Translation
• Putting our assumptions together, we have:

p(f |e, m) = ∑
a∈[0,l]m

p(a |e, m) ×
m

∏
i=1

p( fi |eai
)

p(Alignment) p(Translation|Alignment)

where  is an m-dimensional latent vector with 
each element   in the range of 

a
ai [0,l]
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Word Alignment
• Most of the research for the first 10 years of SMT 

was focusing on improving word alignment. Word 
translations weren’t hard (with MLE), but predicting 
word order was hard. 

• E.g. IBM Model 1, 2, 3, Giza++, FastAlign

p(a |e, m) =
m

∏
i=1

p(ai | i, l, m)

where  is aligned to  , |e | = l, | f | = m, fi eai
ai ∈ [0,l]
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Word Alignment
• Alignments can be visualized by drawing links 

between two sentences, and they are represented 
as vectors of positions:

f

e

a = (1,2,3,4)⊤
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Reordering
• Words may be reordered during translation

f

e

a = (4,3,1,2)⊤
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Word Dropping
• A source word may not be translated at all

f

e

a = (2,3,4)⊤

    1          2          3 
Haus       ist       klein     

the    house    is    small  
  1         2        3       4
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Word Insertion
• Words may be inserted during translation 
• e.g., English just does not have an equivalent 
• But these words must be explained—we typically 

assume every source sentence contains a NULL token

f

e

a = (1,2,3,0,4)⊤

  1          2          3       4        5 
Das    Haus       ist    nur    klein     

NULL  the    house    is    small  
  0         1         2        3       4
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One-to-many Translation
• A source word may be translated into more than 

one target word

f

e

a = (1,2,3,3)⊤
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Many-to-one Translation
• More than one source word may not be translated 

as a unit in lexical translation

This could be addressed by considering 
phrase-level alignment instead of word level.

f

e

a = ??? a = (1,2,3,(4,5)⊤)⊤ ?
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Learn alignment & translation together
• How do we learn from training corpus of  pairs?(f, e)

p(f |e, m) = ∑
a∈[0,l]m

p(a |e, m) ×
m

∏
i=1

p( fi |eai
)

= ∑
a∈[0,l]m

m

∏
i=1

p(ai | i, l, m) × p( fi |eai
)

p(Alignment) p(Translation|Alignment)

p(ai | i, l, m) =
count(ai | i, l, m)

count(i, l, m)

• MLE of two probability with the latent alignment 

p( fi |eai
) =

count( fi, eai
)

count(eai
)

 is the no. time  is aligned to  in the training set.  is the 
no. time we see a foreign sentence  of length  and an English sentence  of length 
count(ai | i, l, m) fi eai

count(i, l, m)
f m e l

29



Learn alignment & translation together
• How do we learn from training corpus of  pairs? 
• “Chicken and egg” problem: 

• If we had the alignments, we could estimate the translation 
probabilities by MLE (i.e., counting) 

• If we had the probabilities, we could find the most likely alignments 
greedily by taking the word pairs with the largest probability 

(f, e)

p( fi |eai
) =

count( fi, eai
)

count(eai
)

ai = arg max
j∈[0,l]

p(ai | i, l, m)
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Expectation-Maximization (EM) Algorithm
• Pick some random (or uniform) starting parameters (i.e., counts) 
• Repeat until converged 

1. E- Step: use the current parameters to compute 
“expected” alignments 

2. Update the no. of times  is translated to  i.e., 
, and keep track of no. of times  is used in 

the training corpus . 

3. M-Step: use MLE to update translation probability 

eai
fi

count(eai
, fi) eai

count(eai
)

p( fi |eai
) =

count( fi, eai
)

count(eai
)
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EM for IBM Model 1
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EM for IBM Model 1
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EM for IBM Model 1
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EM for IBM Model 1
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Convergence
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Whole Pipeline of SMT
• Moses (Koehn 2009)

EM algorithms to align 
& translate words
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Extensions: Lexical to Phrase Translation
• Phrase-based MT: 

• Allow multiple words to translate as chunks 
(including many-to-one) 

• Introduce another latent variable, the source 
segmentation
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Neural Machine Translation
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Neural Features for Translation
• Inspired by Neural n-gram LMs, use a conditional model to 

generate the next English word conditioned on 
• The previous n English words that have been generated 
• The aligned source word and its m neighbors

Devlin et al. 2014
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Neural Features for Translation
• Word alignment is still needed.  
• Improves over SMT

Devlin et al. 2014
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Fully Neural Translation
• Fully end-to-end RNN-based MT model 

• Encode the source sentence using one RNN 

• Generate the target sentence one word at a time 
using another RNN

Sutskever et al. 2014 42



Attention MT Models
• The encoder-decoder model struggles with long 

sentences 

• An RNN is trying to compress an arbitrarily long 
sentence into a finite-length word vector 

• What if we only look at one (or a few) source words 
when we generate each output word?

Bahdanau et al. 2014 43



Intuition

large blackOur dog bit the poor mailman.

うち の ⼤きな ⽝ が 可哀想な郵便屋に 噛み ついた。黒い

Bahdanau et al. 2014
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Attention MT Models

Encoder

I am a student </s>

Decoder

Bahdanau et al. 2014 45



Attention MT Models

Bahdanau et al. 2014

Encoder

I am a student </s>

Decoder

Attention 
Model
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Attention MT Models

Bahdanau et al. 2014

Encoder

I am a student </s>

Decoder

Attention 
Model

softmax
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Attention MT Models

Bahdanau et al. 2014

Encoder

I am a student </s>

Decoder

Attention 
Model

Context Vector
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Attention MT Models

Bahdanau et al. 2014

Encoder

I am a student </s>

je

Decoder

Attention 
Model

Context Vector
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Attention MT Models

Bahdanau et al. 2014

Encoder

I am a student </s> je

je

Decoder

Attention 
Model

Context Vector
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Attention MT Models

Bahdanau et al. 2014

Encoder

I am a student </s> je

je

Decoder

Attention 
Model
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Attention MT Models

Bahdanau et al. 2014

Encoder

I am a student </s> je

je suis

Decoder

Attention 
Model

Context Vector
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Attention MT Models

Bahdanau et al. 2014

Encoder

I am a student </s> je suis

je suis

Decoder

Attention 
Model

Context Vector
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Attention MT Models

Bahdanau et al. 2014

Encoder

I am a student </s> je suis étudiant

je suis étudiant

Decoder

Attention 
Model

Context Vector
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Attention MT Models

Bahdanau et al. 2014

Encoder

I am a student </s> je suis étudiant

je suis étudiant</s>

Decoder

Attention 
Model

Context Vector

55



Convolutional Encoder-Decoder

• CNN:  
• encodes words within a fixed size 

window 
• Parallel computation 
• Shortest path to cover a wider range 

of words 
• RNN: 

• sequentially encode a sentence from 
left to right 
• Hard to parallelize 

Gehring et al. 2014 56



Transformer
• Idea: Instead of using an RNN to encode the source sentence 

and the partial target sentence, use self-attention!

I am a student </s> I am a student </s>

Standard RNN Encoder Self Attention Encoder

raw word vector

word-in-context vector

Vaswani et al. 2017 57



Transformer
• Computation is easily parallelizable 
• Shorter path from each target word to each source word -> 

stronger gradient signals 
• Empirically stronger translation performance 
• Empirically trains substantially faster than more serial models
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Google’s Multilingual NMT 
• Stack 8-layers of LSTM encoder, and 8-layers of LSTM decoder 
• Only use the last layer of encoder LSTM to perform target-to-source 

attention  -> Re-use the context vector for each decoder layer 
• Use the language code to indicate which target language to translate

Johnson et al. 2016 59



Google’s Multilingual NMT 
• Add the target language code to the start of the source sentence, 

which enables sharing parameters for different language pairs 
(many-to-one, one-to-many, zero-shot translation)

Johnson et al. 2016 60



Google’s Multilingual NMT 
• Interpolate the language code embeddings
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• Sentence embeddings learned by MNMT are 
clustered by languages

Google’s Multilingual NMT 
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Multilingual vs Bilingual
• Multilingual NMT especially improves low-resource 

language translation
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Hybrid MT
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Incorporating Discrete Translation 
Lexicons in Neural Machine Translation

• Estimate the probability of translation lexicons (a.k.a 
translation phrases)  

• Integrate this lexicon probability  with NMT 
probability  

- Add them as a bias to the NMT’s softmax output 

- Linear interpolation

Arthur et al NAACL 2016. Incorporating Discrete Translation Lexicons in Neural Machine Translation65



KNN-MT
• Construct a datastore (e.g., phrase table in SMT), 

and perform KNN retrieval to get related phrases 
for a test input

Khandelwal et al ICLR 2021. Nearest Neighbor Machine Translation
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Prompt-based MT
• Given a translation instruction and few-shot 

examples, ask a LLM to perform MT

Brown et al. NeurIPS 2019. GPT-3: Language Models are Few-Shot Learners
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Prompt-based MT
• Perform comparable or even better at XX-English 

translation, but still far behind at English-XX 
translation 

• GPT-3’s training data (93% by word count) is still 
English

Brown et al. NeurIPS 2019. GPT-3: Language Models are Few-Shot Learners68



Prompt-based MT
• Ask ChatGPT to create prompts for MT

Jiao et al. 2023 Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine
69



Future Research of MT
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Six Challenges of NMT
1. NMT works poorly on out-of-domain sentences 
2. Works better in high-resource languages, not in low-

resource languages. 
3. Weakness in low-frequency words w.r.t. SMT 
4. Bad at very long sentences
5. Attentions do not always fulfill the role of a word 

alignment
6. Beam search decoding only works with a smaller 

beam size, and deteriorates when exposed to a 
larger search space.

Koehn & Knowles 2016 71



Massively Multilingual NMT in the Wild

• Data and supervision: learn from monolingual data for most 
low-resourced languages (e.g., pre-training, data 
augmentation such as back-translation (Sennrich et al. 2015), 
language model fusion (Gulcehre et al. 2015), unsupervised 
NMT (Lample et al. 2017) 

• Multitask training: cross-lingual transfer (Neubig, Hu 2018), 
meta learning (Nichol et al. 2018), curriculum learning 
(Graves et al. 2017) 

• Increasing Capacity: train on more languages, efficiency 
• Architecture & Vocabulary: character NMT (Lee et al. 2017), 

byte-based NMT (Gillick et al. 2015)

Arivazhagan et al. 2019 72



Comparison between SMT and NMT
• SMT (non-parametric model) 

- Explicitly store translation phrase pairs 
- High precision, but low coverage, thus poor generation 
- Easy manipulation (insert/delete/update pairs in the translation phrase table) 

• NMT (over-parametric model) 
- Implicitly store translation phrase pairs in model parameters 
- Better generation, but data-hungry 
- Hard manipulation (catastrophic forgetting after fine-tuning, domain adaptation 

issues) 

• Hybrid MT (e.g., Retrieval-MT, Prompt-based MT) 
- Leverage both neural network parameters and retrieved translation phrase pairs 
- Perform better than NMT on domain adaptation when providing new domain 

information from retrieval.
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Questions?

74


