CS769 Advanced NLP

Prompting

Junjie Hu

Slides adapted from Pengfei, Graham https://junjiehu.github.io/cs769-spring23/

Goals for Today

- Prompting vs other machine learning paradigms in NLP
- General Workflow of Prompting
- Key Components of Prompting
 - 1. Pre-trained Model Choice
 - 2. Prompt Engineering
 - 3. Answer Engineering
 - 4. Expanding the Paradigm
 - 5. Prompt-based Training Strategies

Recommended Reading

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing

Pengfei Liu

Carnegie Mellon University pliu3@cs.cmu.edu

Zhengbao Jiang

Carnegie Mellon University zhengbaj@cs.cmu.edu

Weizhe Yuan

Carnegie Mellon University weizhey@cs.cmu.edu

Hiroaki Hayashi

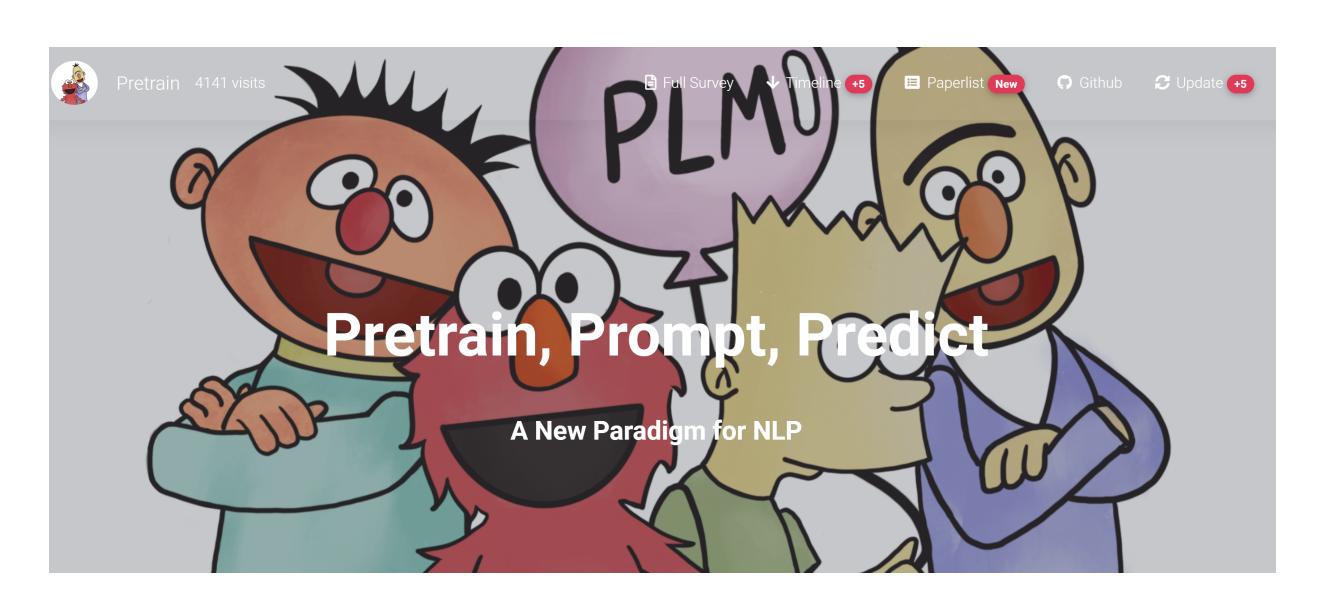
Carnegie Mellon University
hiroakih@cs.cmu.edu

Jinlan Fu

National University of Singapore jinlanjonna@gmail.com

Graham Neubig

Carnegie Mellon University gneubig@cs.cmu.edu



Four Paradigms of NLP Technical Development

- Feature Engineering
- Architecture Engineering
- Objective Engineering
- Prompt Engineering

Feature Engineering

- Paradigm: Fully Supervised Learning (Non-neural Network)
- Time Period: Most popular through 2015
- Characteristics:
 - Non-neural machine learning models mainly used
 - Require manually defined feature extraction
- Representative Work:
 - Manual features -> linear or kernelized support vector machine (SVM)
 - Manual features -> conditional random fields (CRF)

Architecture Engineering

- Paradigm: Fully Supervised Learning (Neural Networks)
- Time Period: About 2013-2018
- Characteristics:
 - Rely on neural networks
 - Do not need to manually define features, but should modify the network structure (e.g.: LSTM v.s CNN)
 - Sometimes used pre-training of LMs, but often only for shallow features such as embeddings
- Representative Work:
 - □ CNN/LSTM for Text Classification
 - □ Transformer for Machine Translation

Objective Engineering

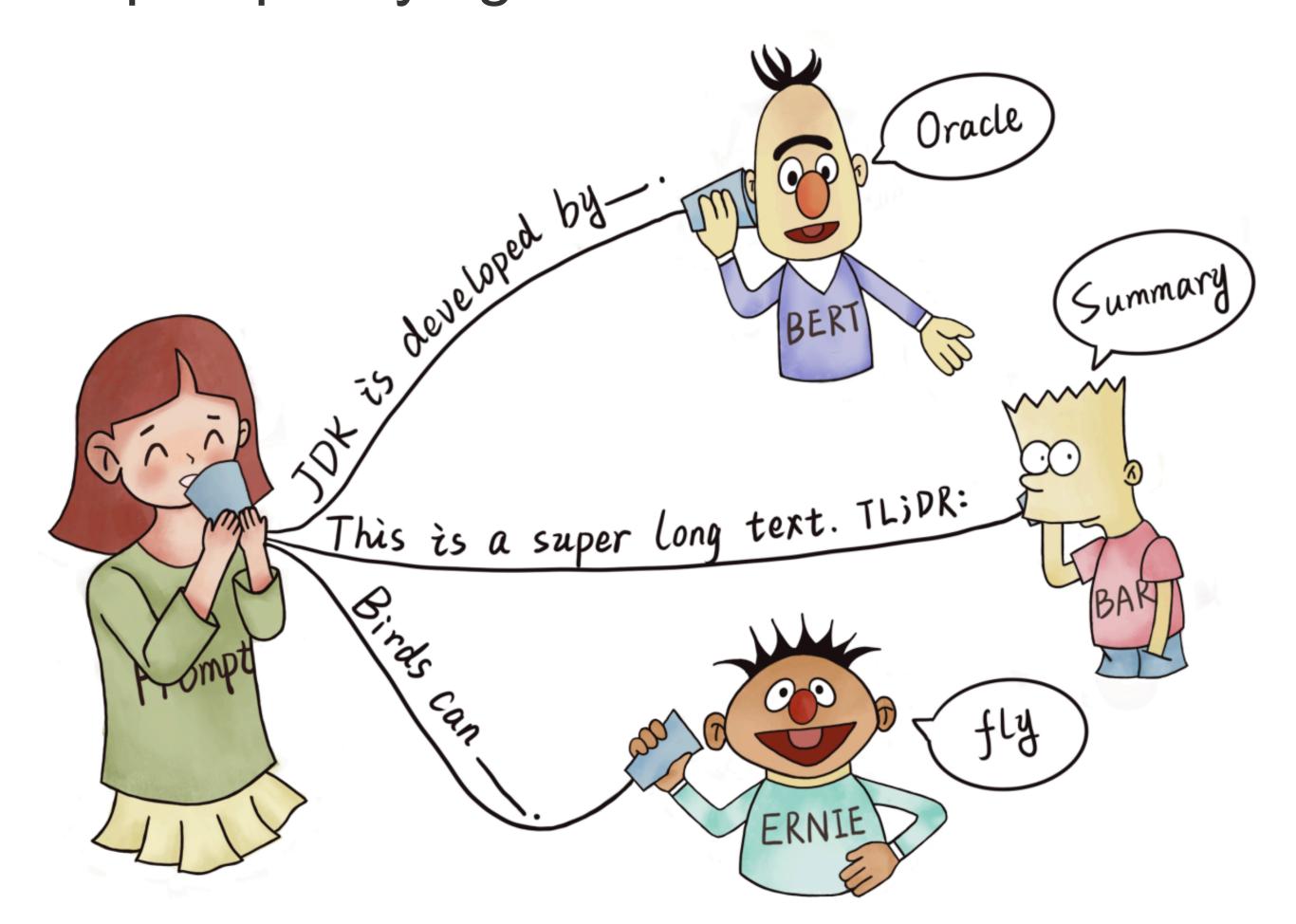
- Paradigm: Pre-train, Fine-tune
- Time Period: 2017-Now
- Characteristics:
 - Pre-trained LMs (PLMs) used as initialization of full model both shallow and deep features
 - Less work on architecture design, but engineer objective functions
- Typical Work:
 - BERT → Fine Tuning

Prompt Engineering

- Paradigm: Pre-train, Prompt, Predict
- Date: 2019-Now
- Characteristic:
 - NLP tasks are modeled entirely by relying on LMs
 - □ The tasks of shallow and deep feature extraction, and prediction of the data are all given to the LM
 - Engineering of prompts is required
- Representative Work:
 - □ GPT3, GPT4, ChatGPT

What is Prompting?

Encouraging a pre-trained model to make particular predictions by providing a "prompt" specifying the task to be done.



What is the general workflow of Prompting?

- Prompt Addition
- Answer Prediction
- Answer-Label Mapping

Prompt Addition

- Prompt Addition: Given input x, we transform it into prompt x' through two steps:
 - □ Define a template with two slots, one for input [x], and one for the answer [z]
 - ☐ Fill in the input slot [x]

Example: Sentiment Classification

Input: x = "I love this movie"

Template: [x] Overall, it was a [z] movie

Prompting: x' = "I love this movie. Overall it was a [z] movie."

Answer Prediction

- Answer Prediction: Given a prompt, predict the answer [z]
 - □ Fill in [z]

Example

Input: x = "I love this movie"

Template: [x] Overall, it was a [z] movie

Prompting: x' = "I love this movie. Overall it was a [z] movie."

Predicting: x' = "I love this movie. Overall it was a fantastic movie."

Mapping

• Mapping: Given an answer, map it into a class label

Example

Input: x = "I love this movie"

Template: [x] Overall, it was a [z] movie

Prompting: x' = "I love this movie. Overall it was a [z] movie."

Predicting: x' = "I love this movie. Overall it was a fantastic movie."

Mapping: fantastic => Positive

Types of Prompts

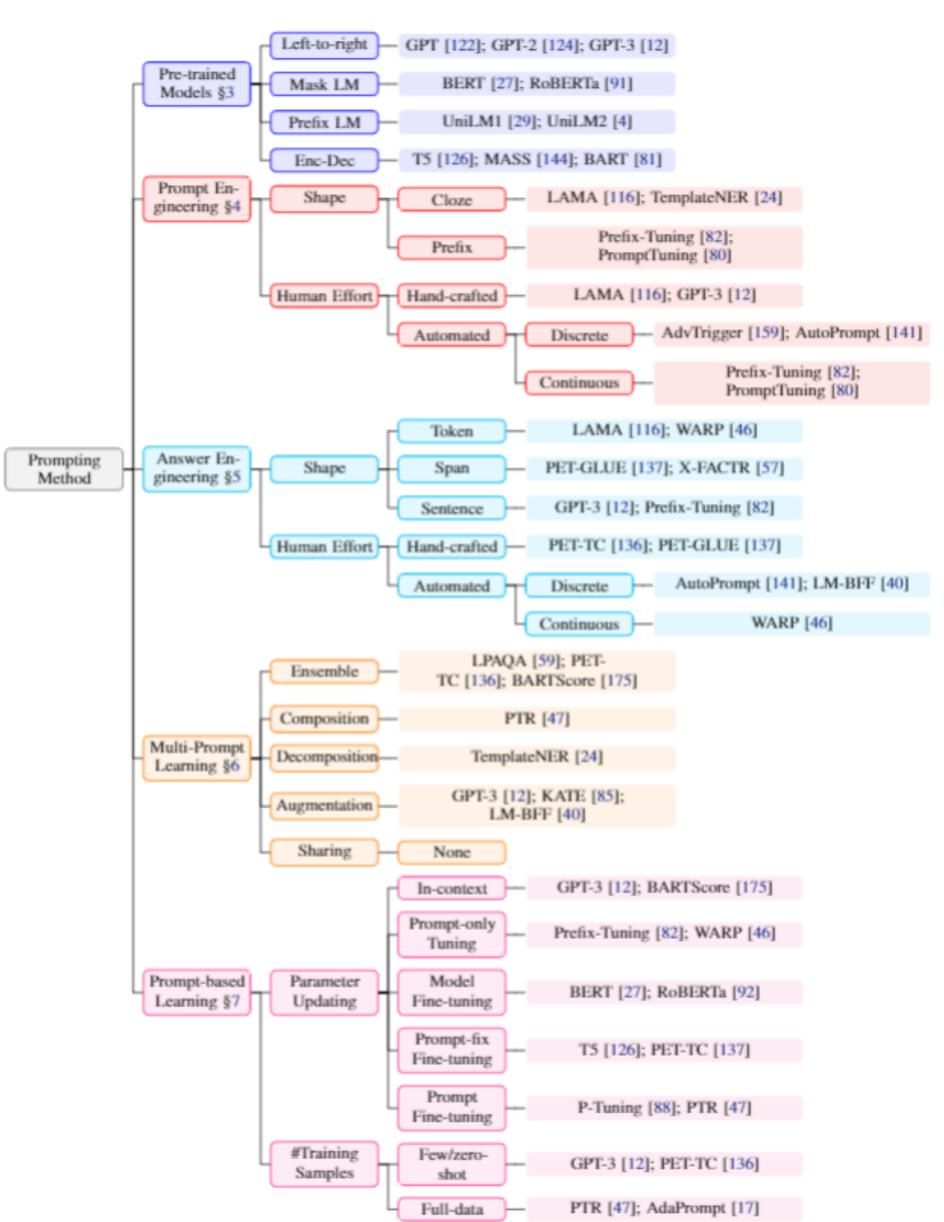
Prompt: I love this movie. Overall it was a [z] movie

- Filled Prompt: I love this movie. Overall it was a boring movie
- Answered Prompt: I love this movie. Overall it was a fantastic movie

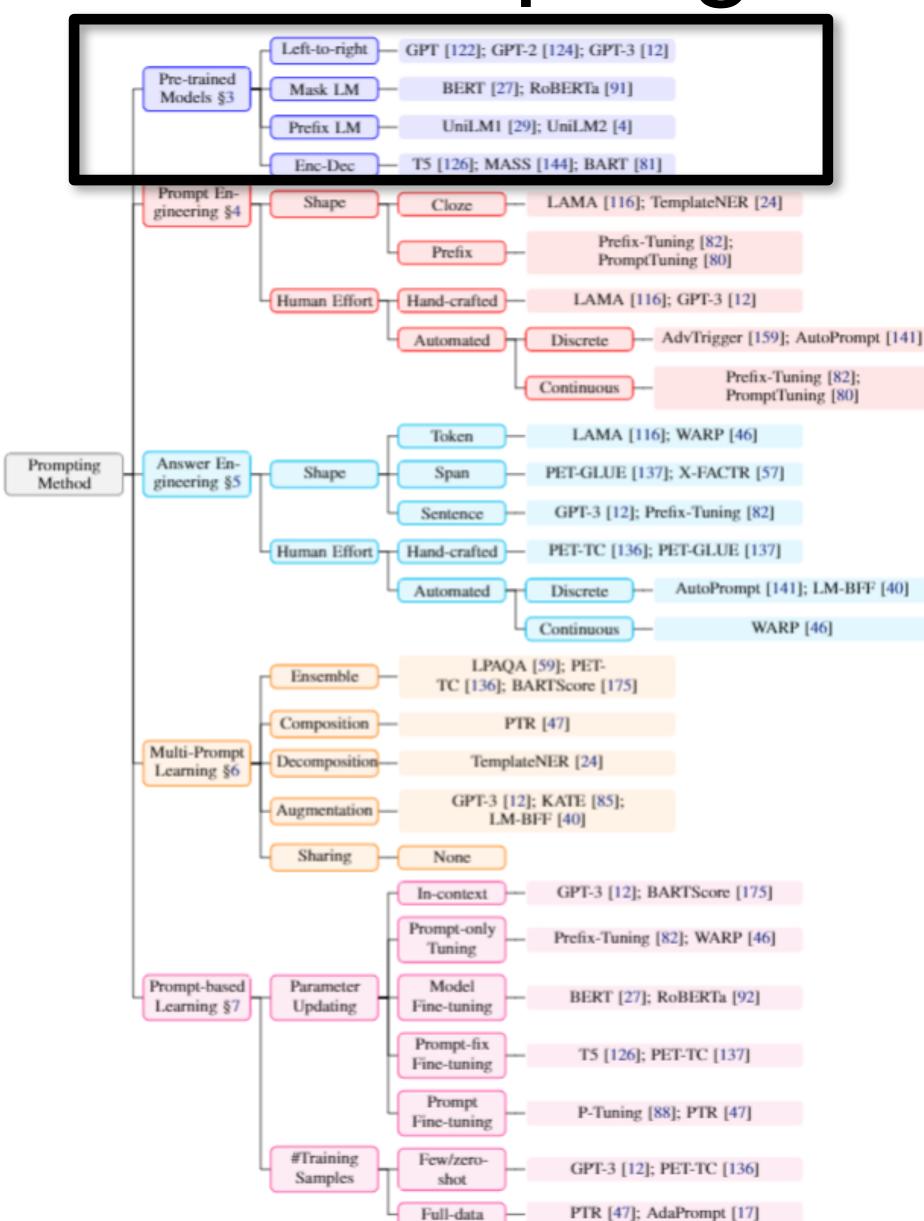
- Prefix Prompt: I love this movie. Overall this movie is [z]
- Cloze Prompt: I love this movie. Overall it was a [z] movie

- Pre-trained Model Choice
- Prompt Template Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies

- Pre-trained Model Choice
- Prompt Template Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies



- Pre-trained Model Choice
- Prompt Template Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies



Pre-trained Language Models

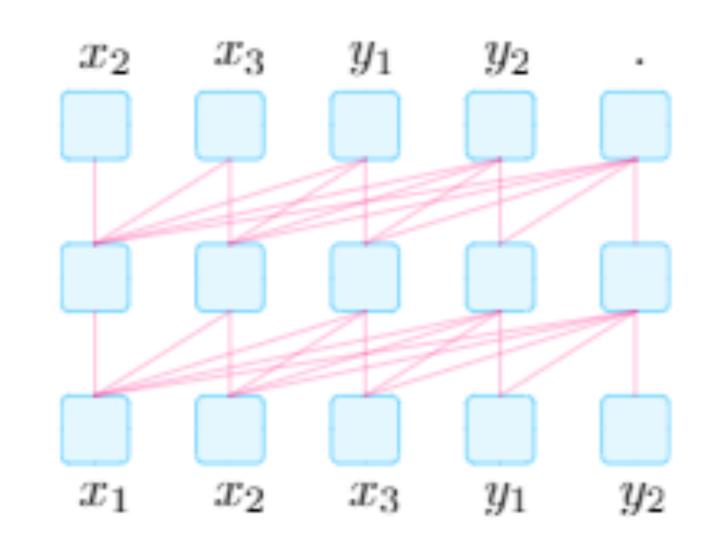
Popular Frameworks

- (Left-to-Right) Autoregressive LM
- Masked LM
- Prefix LM
- Encoder-decoder LM

(Left-to-right) Autoregressive Language Model

Characteristics:

- □ First proposed by Markov (1913)
- Count-based-> Neural network-based
- Specifically suitable to highly larger-scale LMs
- Example: GPT-1, GPT-2, GPT-3, GPT-4
- Roles in Prompting Methods
 - The earliest architecture chosen for prompting
 - Usually equipped with prefix prompt and the parameters of PLMs are fixed



Masked Language Model

Characteristics:

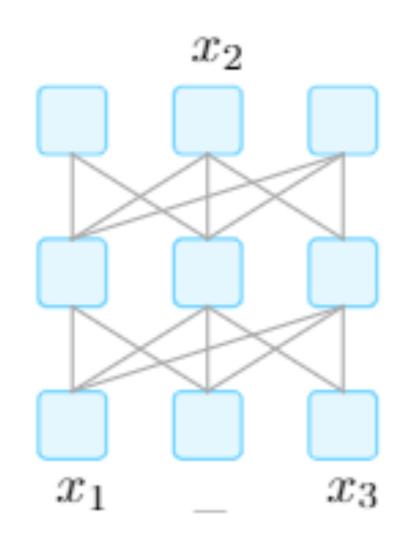
- Unidirectional -> bidirectional prediction
- Suitable for NLU tasks

Example:

□ BERT, ERNIE

Roles in Prompting Methods

- Usually combined with Cloze prompt
- Suitable for NLU tasks, which should be reformulated into a cloze task



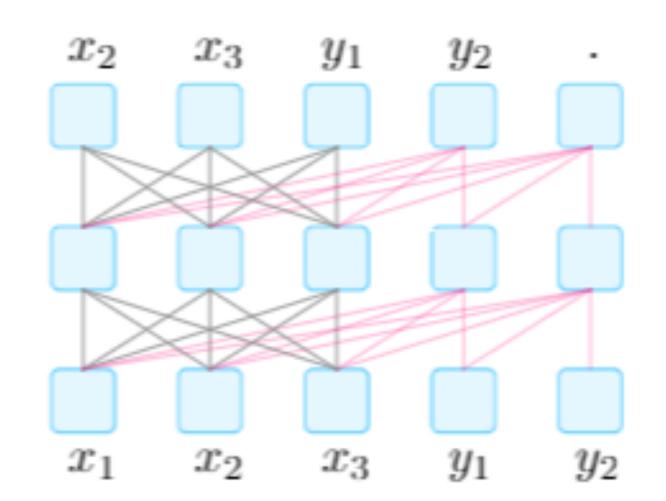
Prefix Language Model

Characteristics:

- A combination of Masked & Left-to-right
- Use a Transformer but two different mask mechanisms to handle text X and y separately
- Corruption operations can be introduced when encoding X

Examples:

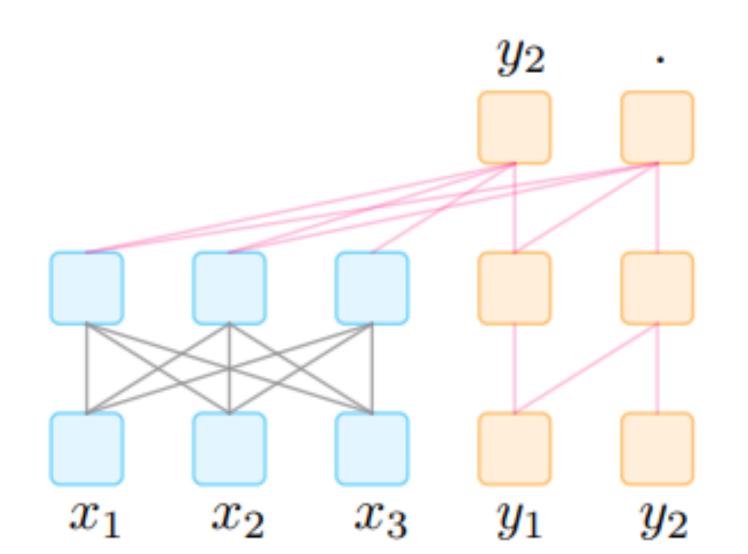
□ UniLM 1,2, ERNIE-M



Encoder-Decoder LM

Characteristics:

- A denoised auto-encoder
- Use two Transformers and two different mask mechanisms to handle text X and y separately
- Corruption operations can be introduced when encoding X



• Examples:

□ BART, T5

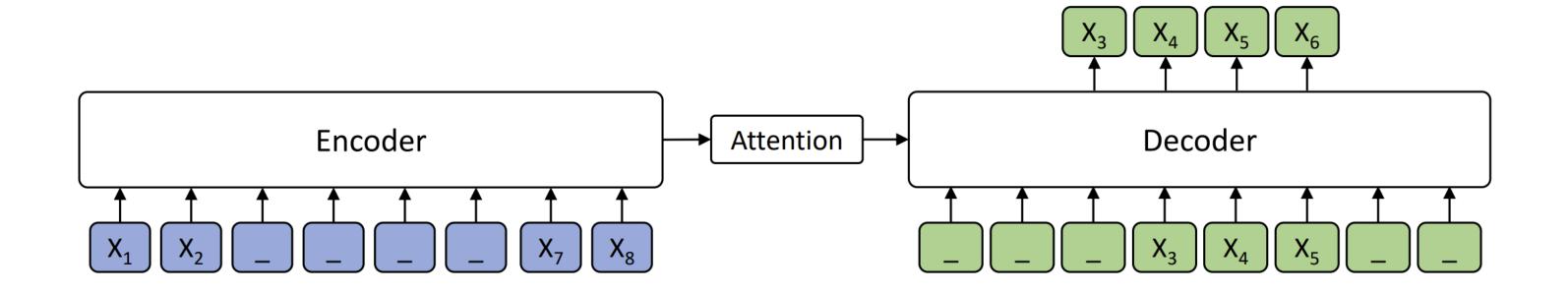
Encoder-Decoder Pre-training Methods

Representative Methods

- MASS
- BART (mBART)
- UniLM
- T5 (mT5, FlanT5)

MASS

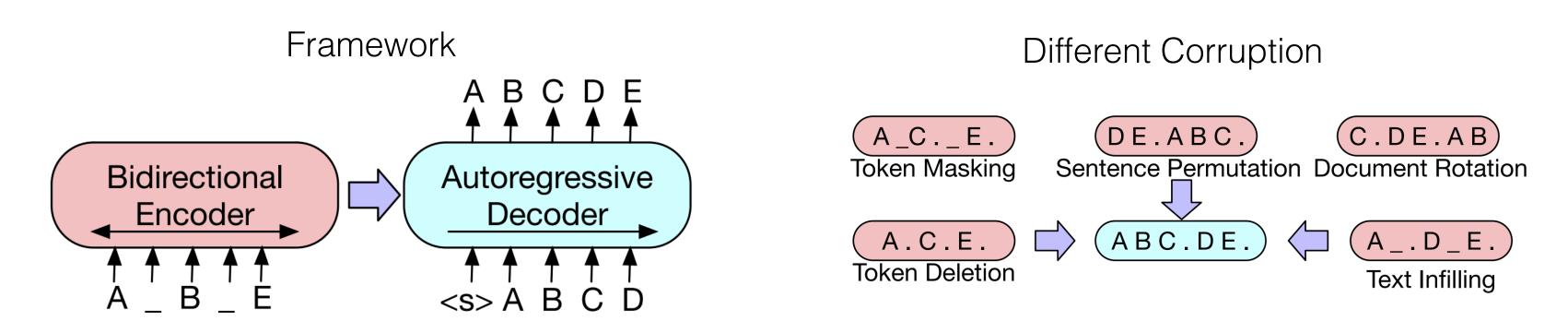
(Song et al. 2019)



- Model: Transformer-based Encoder-decoder
- Objective: only predict masked spans
- Data: WebText

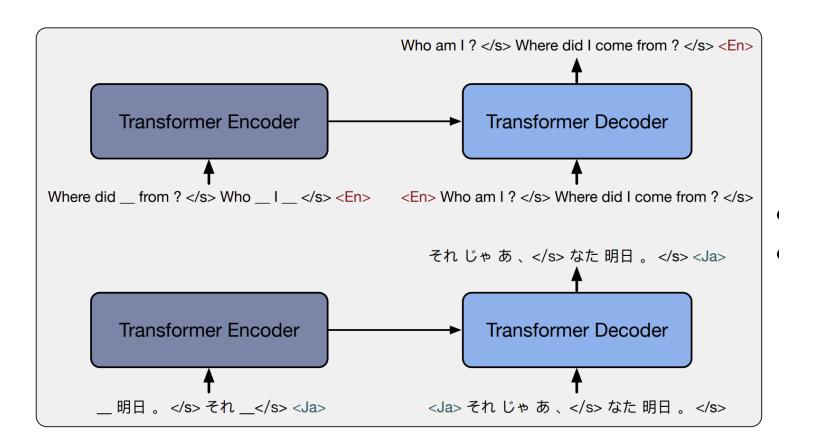
BART

(Lewis et al. 2019)



- Model: Transformer-based encoder-decoder model
- Objective: Re-construct (corrupted) original sentences
- Data: similar to RoBERTa (160GB): BookCorpus, CC-NEWs, WebText, Stories

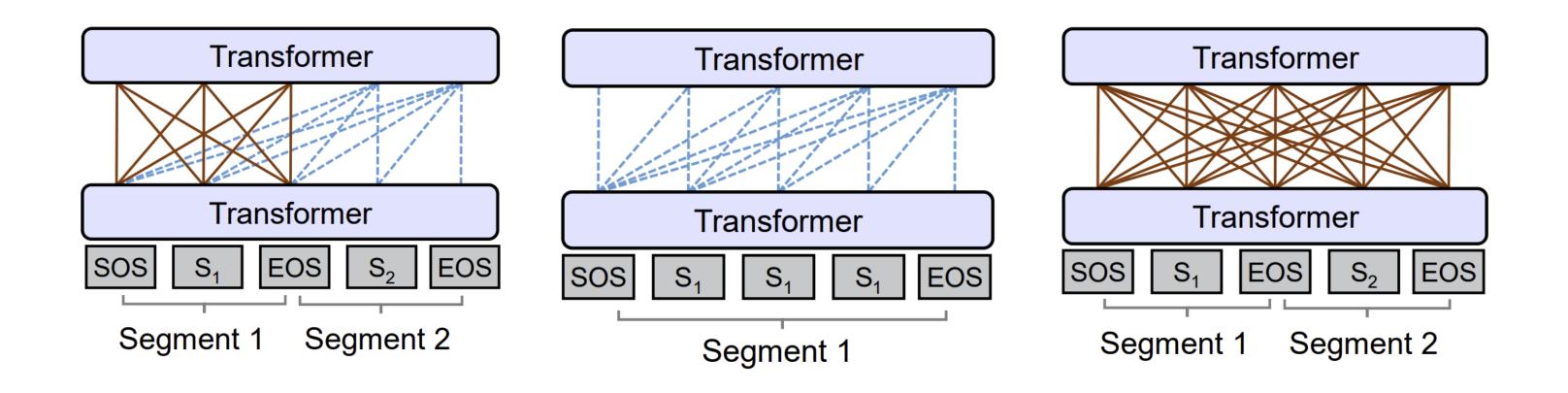
mBART(Liu et al. 2021)



- Model: Transformer-based Multi-lingual Denoising auto-encoder
- Objective: Re-construct (corrupted) original sentences
- Data: CC25 Corpus (25 langauges)

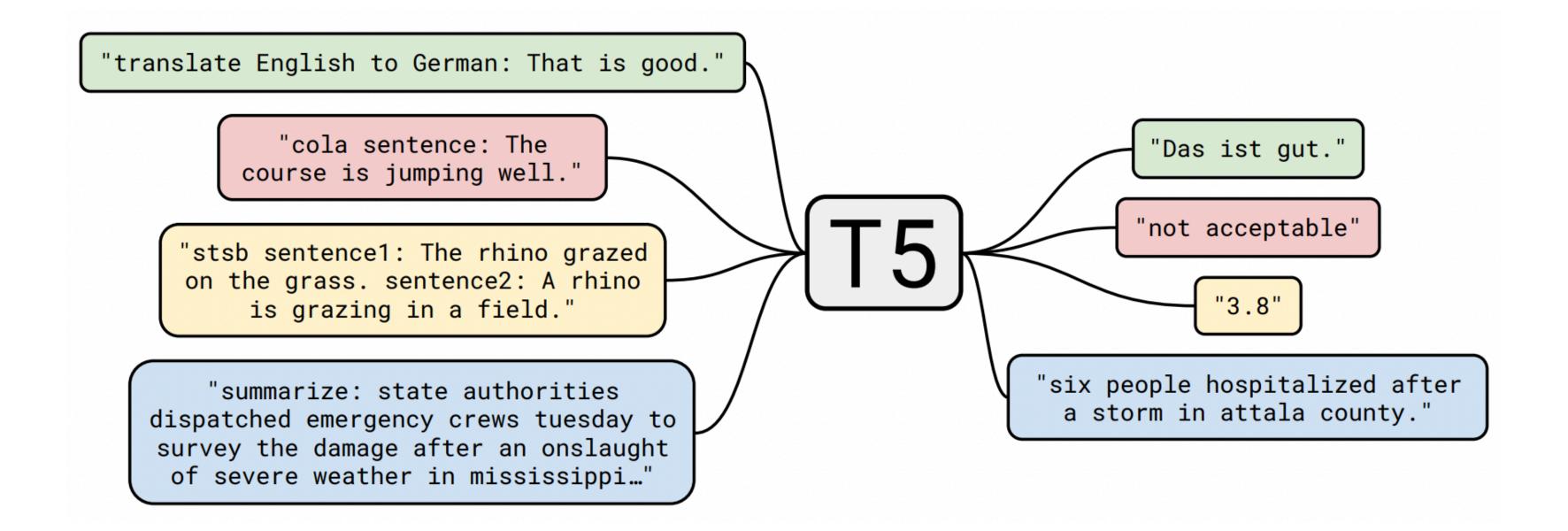
UNILM

(Dong et al. 2019)



- Model: Prefix LM (a.k.a. Seq2seq LM), left-to-right LM, Masked LM
- Objective: three types of LMs, shared parameters
- Data: English Wikipedia and BookCorpus

T5 (Raffel et al. 2020)



Convert all tasks to sequence-to-sequence prediction

T5 Let al 2020)

(Raffel et al. 2020)



- Model: left-to-right LM, Prefixed LM, encoder-decoder
- Objective: explore different objectives respectively
- Data: C4 (750G) + Wikipedia + RealNews + WebText

T5 (Raffel et al. 2020)

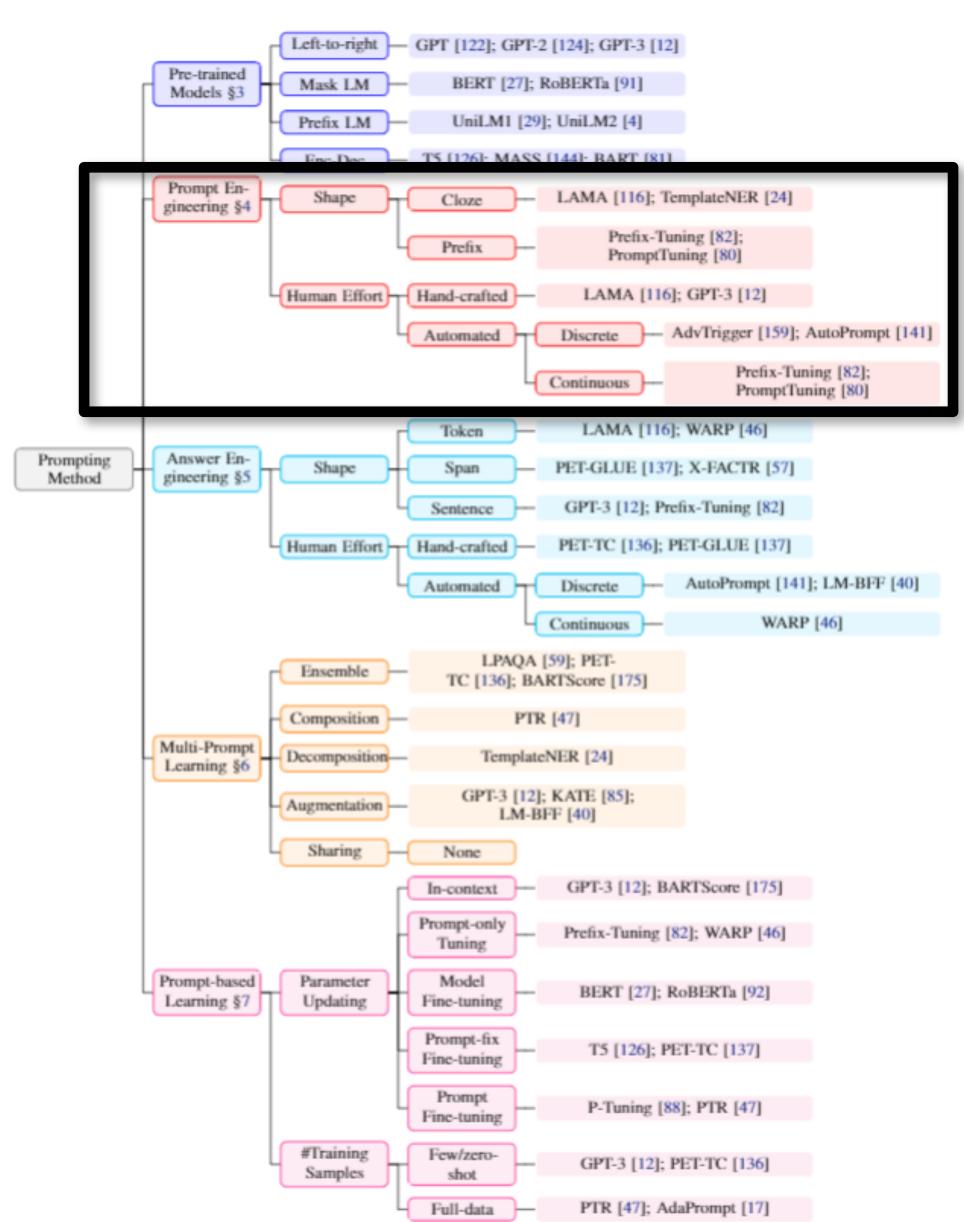
Objective	Inputs	Targets
Prefix language modeling BERT-style Devlin et al. (2018) Deshuffling MASS-style Song et al. (2019) I.i.d. noise, replace spans I.i.d. noise, drop tokens Random spans	Thank you for inviting Thank you <m> <m> me to your party apple week. party me for your to . last fun you inviting week Thank Thank you <m> <m> me to your party <m> week. Thank you <x> me to your party <y> week. Thank you me to your party week. Thank you me to your party week.</y></x></m></m></m></m></m>	me to your party last week . (original text) (original text) (original text) <x> for inviting <y> last <z> for inviting last <x> for inviting me <y> your party last <z></z></y></x></z></y></x>

- Model: left-to-right LM, Prefix LM, encode-decoder
- Objective: explore different objectives respectively
- Data: C4 (750G) + Wikipedia + RealNews + WebText

Application of Prefix LM/Encoder-Decoders in Prompting

- Conditional Text Generation
 - Translation
 - □ Text Summarization
- Generation-like Tasks
 - Information Extraction
 - Question Answering

- Pre-trained Model Choice
- Prompt Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies



Traditional Formulation V.S Prompt Formulation

Input: x = "I love this movie"

Predicting: y = Positive

Input: x = "I love this movie"

Template: [x] Overall, it was a [z] movie

Prompting: x' = "I love this movie. Overall it was a [z] movie."

Predicting: x' = "I love this movie. Overall it was a fantastic movie."

Mapping (answer -> label):

fantastic => Positive

Traditional Formulation V.S Prompt Formulation

Input: x = "I love this movie"

Predicting: y = Positive

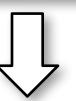
How to define a suitable prompt template?

Input: x = "I love this movie"

Template: [x] Overall, it was a [z] movie

compting: x' = "I love this movie. Overall it
was a [z] movie."

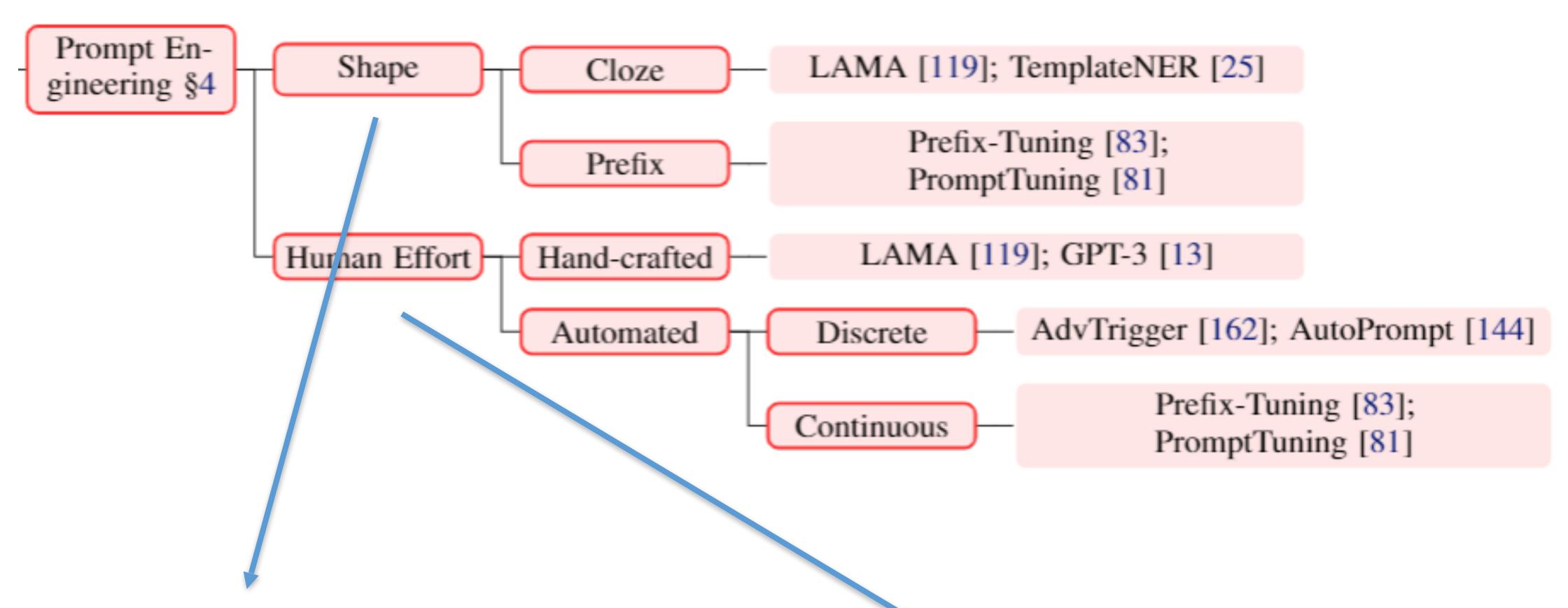
Predicting: x' = "I love this movie. Overall it was a fantastic movie."



Mapping (answer -> label):

fantastic => Positive

Prompt Template Engineering



How to define the shape of a prompt template?

How to search for appropriate prompt templates?

Prompt Shape

Cloze Prompt

prompt with a slot [z] to fill in the
 middle of the text as a cloze prompt,

Prefix Prompt

prompt where the input text comesentirely before slot [z]

I love this movie. Overall it was a [z] movie

I love this movie. Overall this movie is [z]

Design of Prompt Templates

Hand-crafted

Configure the manual template based on the characteristics of the task

Automated search

- Search in discrete space
- Search in continuous space

Representative Methods for Prompt Search

- Prompt Mining
- Prompt Paraphrasing
- Gradient-based Search
- Prompt/Prefix Tuning

Prompt Mining (Jiang et al. 2019)

- Mine prompts given a set of questions/answers
- Middle-word

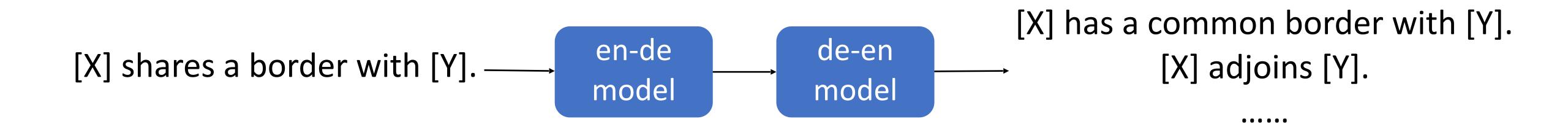
Barack Obama was born in Hawaii. \rightarrow [X] was born in [Y].

Dependency-based

```
The capital of France is Paris. \rightarrow capital of [X] is [Y].
```

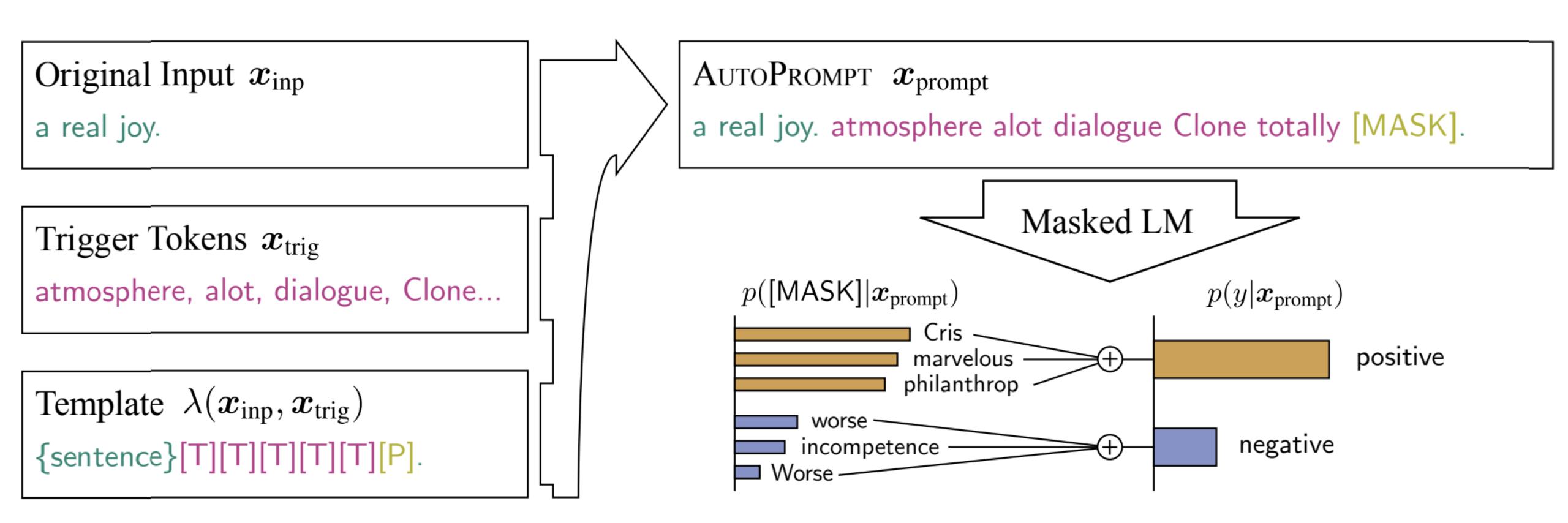
Prompt Paraphrasing (Jiang et al. 2019)

- Paraphrase an existing prompt to get other candidates
- e.g. back translation with beam search



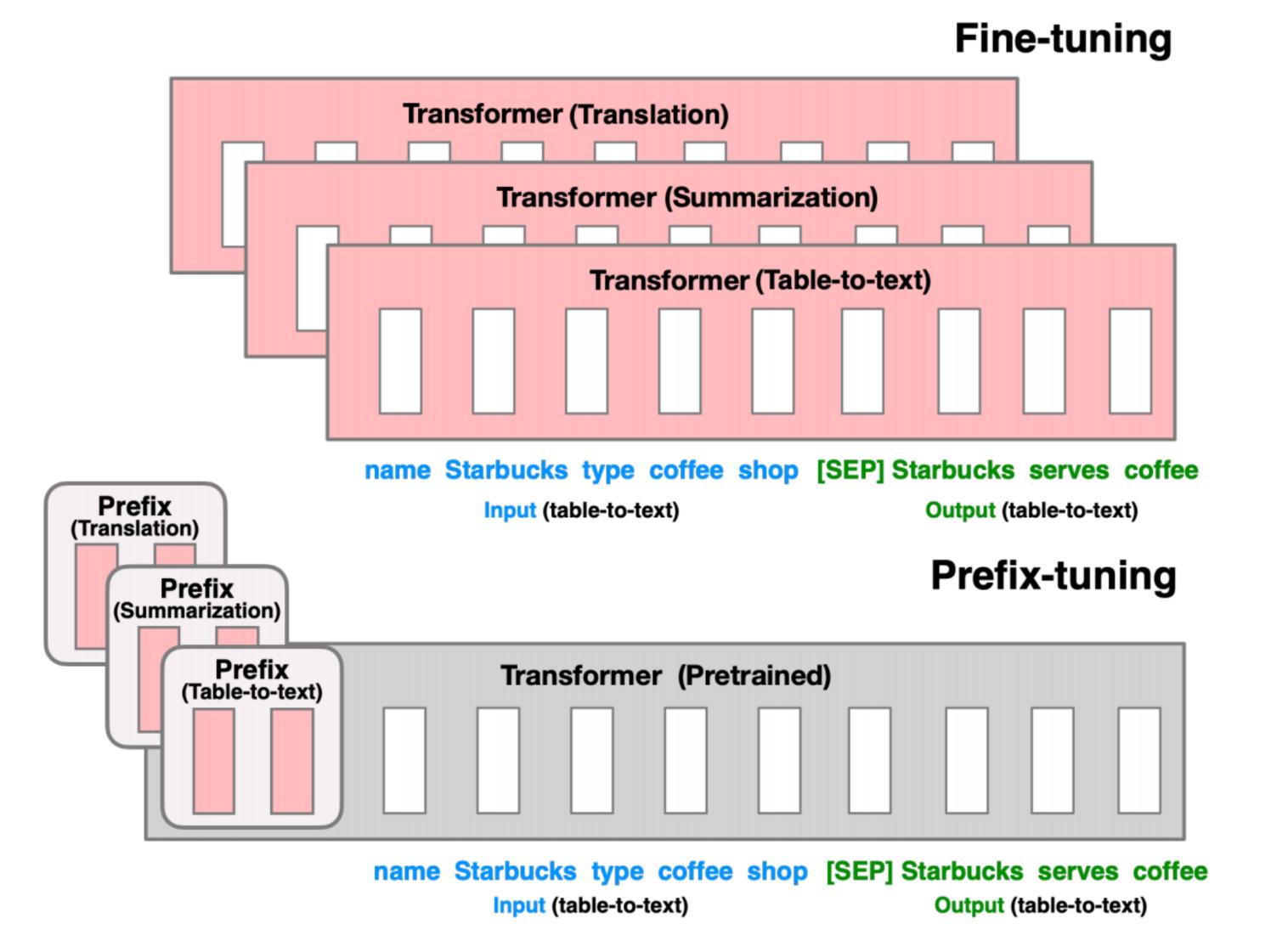
Gradient-based Search — AutoPrompt (Shin et al. 2020)

• Automatically optimize arbitrary prompts based on existing words



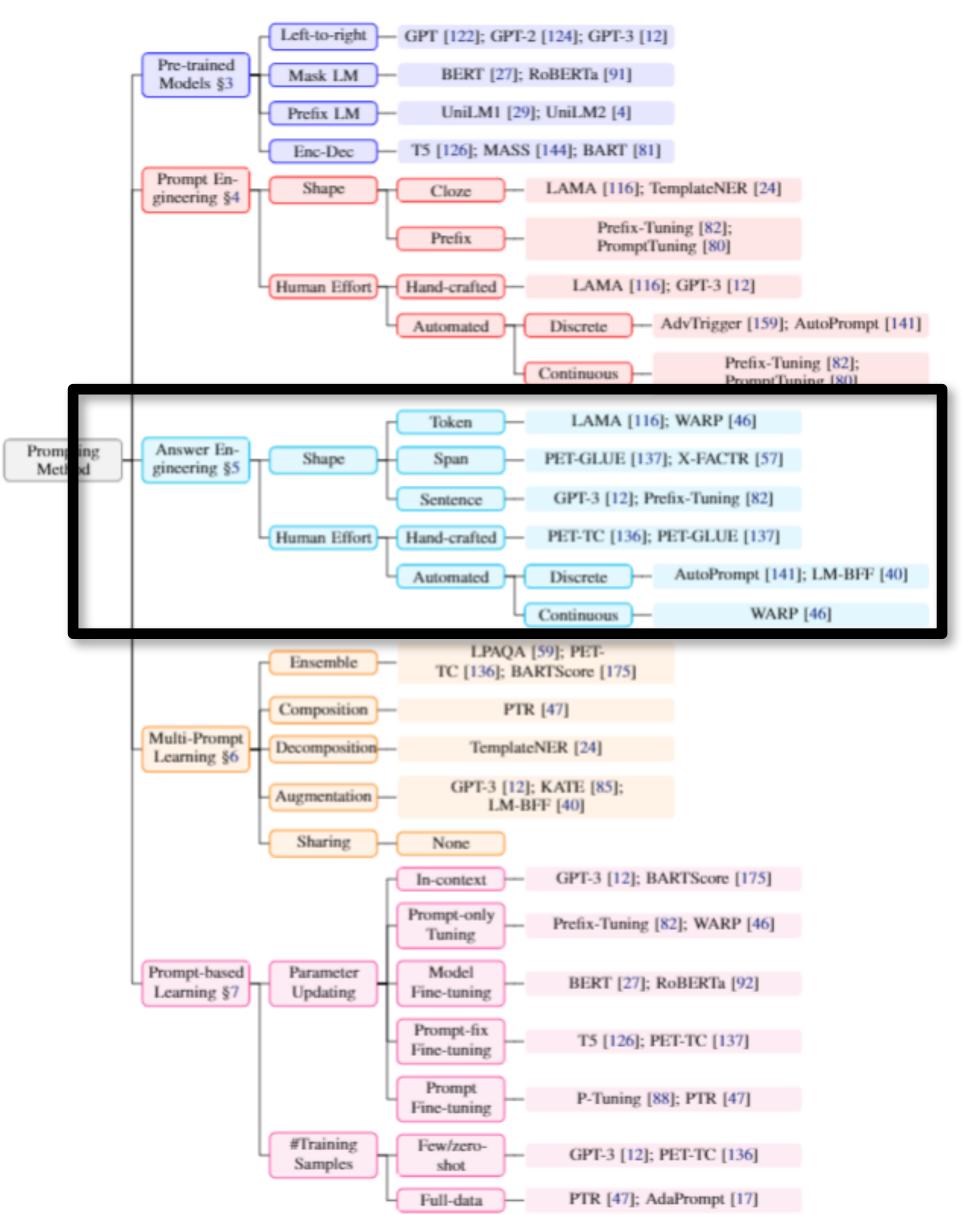
Prefix/Prompt Tuning (Li and Liang 2021, Lester et al. 2021)

- Optimize the embeddings of a prompt, instead of the words.
- "Prompt Tuning"
 optimizes only the
 embedding layer, "Prefix
 Tuning" optimizes prefix
 of all layers



Design Considerations for Prompting

- Pre-trained Model Choice
- Prompt Template Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies



Answer Engineering

- Why do we need answer engineering?
 - We have reformulate the task! We also should re-define the "ground truth labels"

Traditional Formulation V.S Prompt Formulation

Input: x = "I love this movie"

Predicting: y = Positive

Input: x = "I love this movie"

Template: [x] Overall, it was a [z] movie

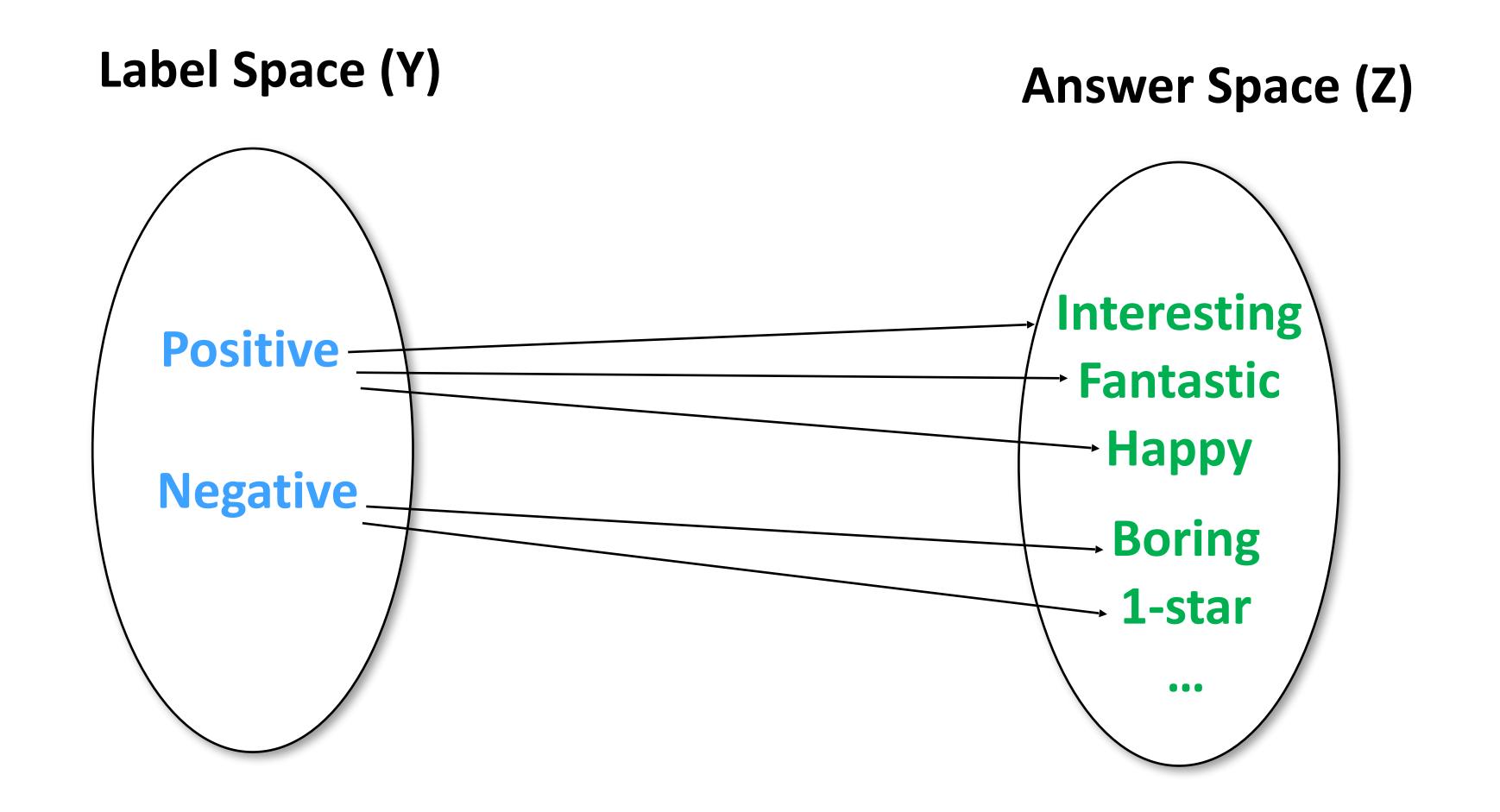
Prompting: x' = "I love this movie. Overall it was a [z] movie."

Predicting: x' = "I love this movie. Overall it was a fantastic movie."

Mapping (answer -> label):

fantastic => Positive

Traditional Formulation V.S Prompt Formulation



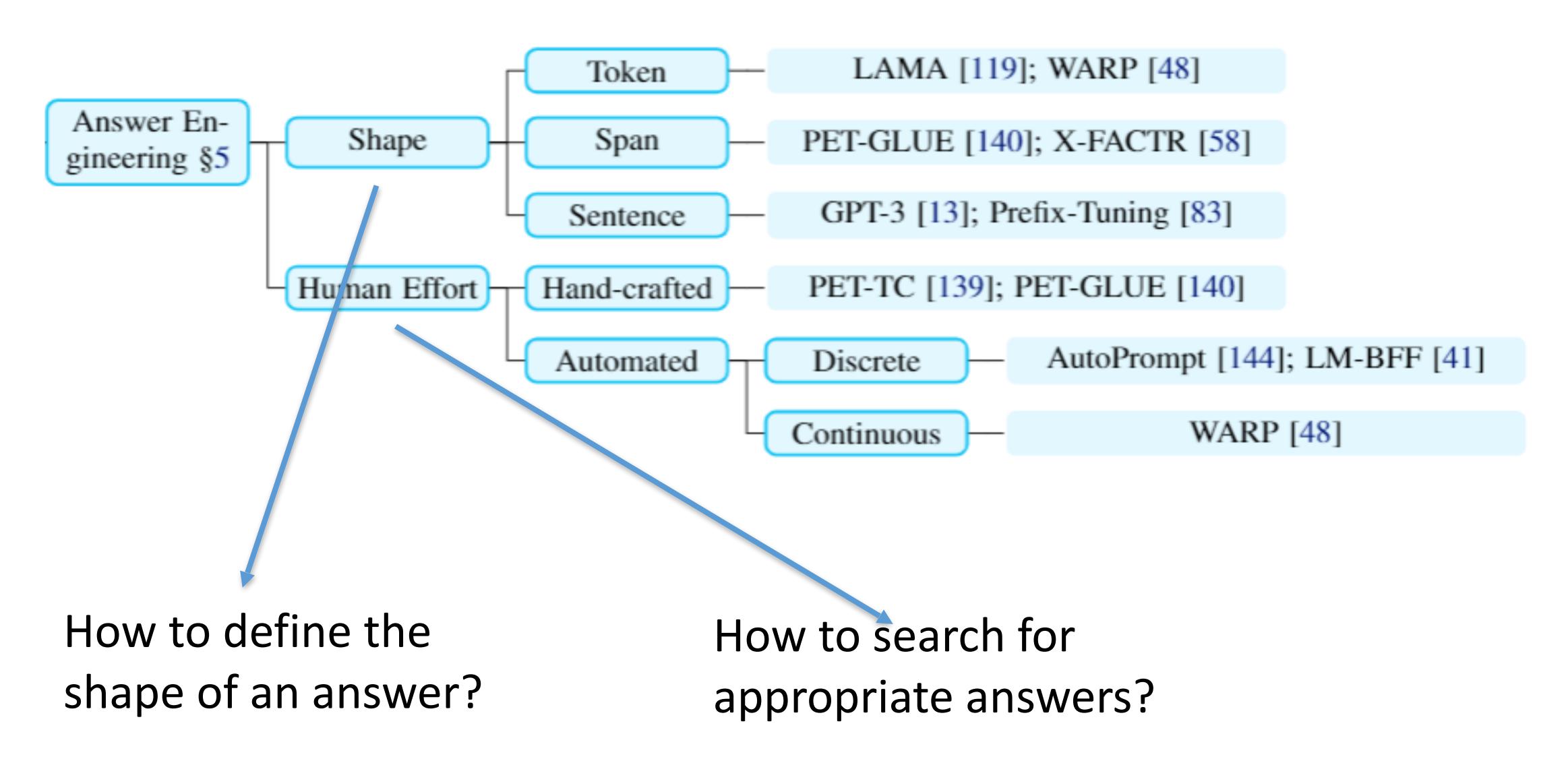
Answer Engineering

- Why do we need answer engineering?
 - We have reformulate the task! We also should re-define the "ground truth labels"

Definition:

 aims to search for an answer space and a map to the original output Y that results in an effective predictive model

Design of Prompt Answer



Answer Shape

- Token: Answers can be one token in the pre-trained language model vocabulary
- Chunk: Answers can be chunks of words made up of more than one tokens
 - Usually used with the Cloze prompt
- Sentence: Answers can be a sentence of arbitrary length
 - Usually used with prefix prompt (seq2seq LM for generative tasks)

Answer Shape

Type	Task	Input ([X])	Template	Answer ([Z])
Text CLS	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic
	Topics	He prompted the LM.	[X] The text is about [Z].	sports science
	Intention	What is taxi fare to Denver?	[X] The question is about [Z].	quantity city
Text-span CLS	Aspect Sentiment	Poor service but good food.	[X] What about service? [Z].	Bad Terrible
Text-pair CLS	NLI	[X1]: An old man with [X2]: A man walks	[X1]? [Z], [X2]	Yes No
Tagging	NER	[X1]: Mike went to Paris. [X2]: Paris	[X1] [X2] is a [Z] entity.	organization location
Text Generation	Summarization	Las Vegas police	[X] TL;DR: [Z]	The victim A woman
	Translation	Je vous aime.	French: [X] English: [Z]	I love you. I fancy you

token

Token or span

sentences

Answer Search

Hand-crafted

- □ Infinite answer space (e.g., summarization, machine translation): Map the predicted tokens as the final answers $(z \rightarrow y)$
- □ Finite answer space (e.g., text classification, sequence labeling): Map a finite set of words to labels (e.g., "anger", "sadness", "fear" to "negative")

Automated Search

- Discrete Space
- Continuous Space

Discrete Search Space

Answer Paraphrasing

- start with an initial answer space,
- then use paraphrasing to expand this answer space

Prune-then-Search

- an initial pruned answer space of several plausible answers is generated
- an algorithm further searches over this pruned space to select a final set of answers

Label Decomposition

- decompose each relation label into its constituent words and use them as an answer
 - per:city_of_death => {person, city, death}

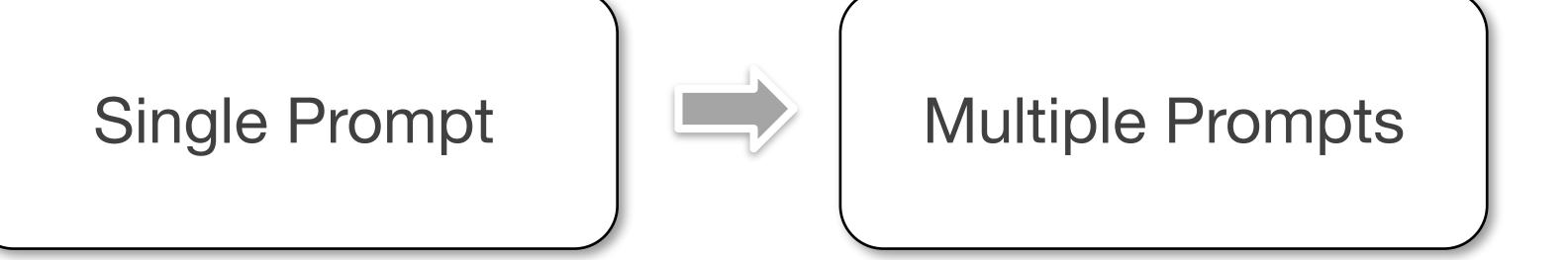
Continuous Search Space

 Core idea: assign a virtual token for each class label and optimize the token embedding for each label

Design Considerations for Prompting

- Pre-trained Model Choice
- Prompt Template Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies

Multi-Prompt Learning



Multi-Prompt Learning

Prompt Ensemble **Prompt Augmentation** Multiple Prompts Single Prompt **Prompt Composition** Prompt Decomposition **Prompt Sharing**

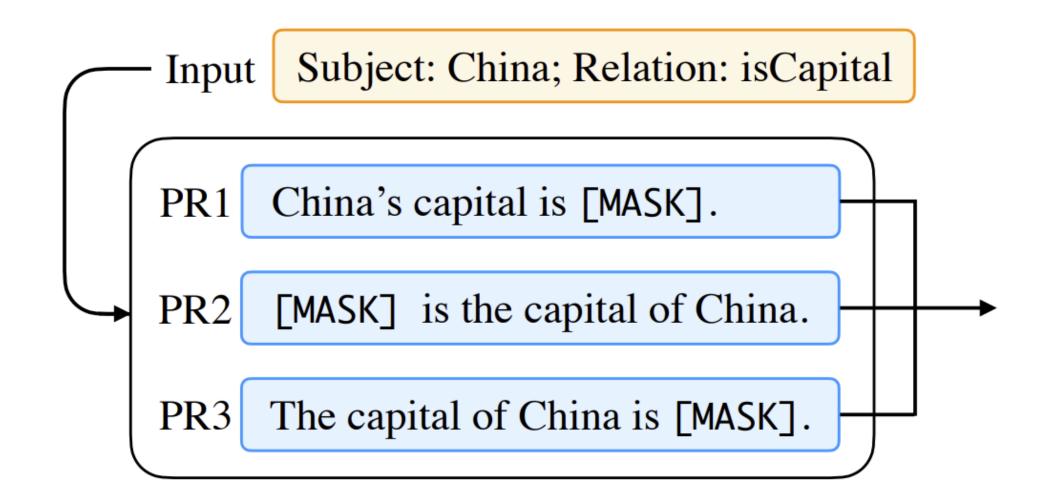
Prompt Ensembling

Definition

 using multiple unanswered prompts for an input at inference time to make predictions

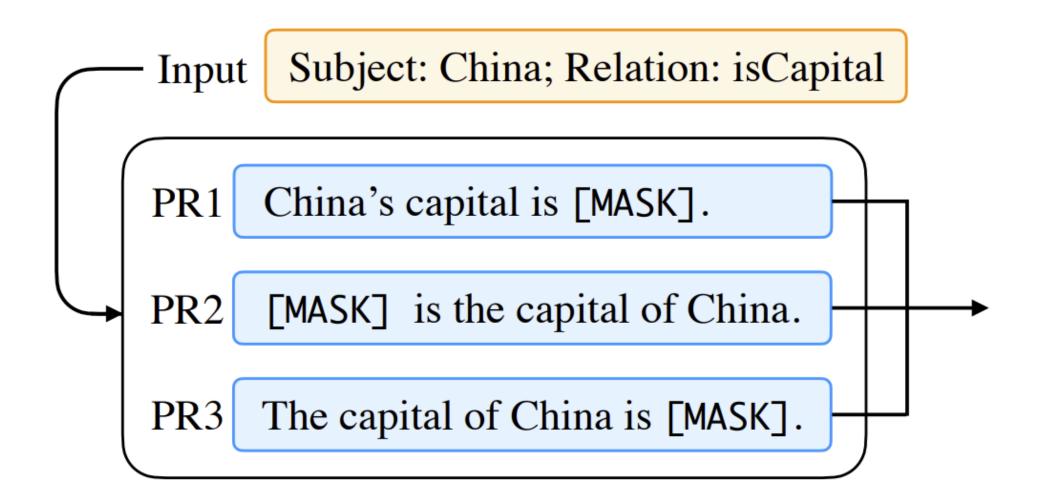
Advantages

- Utilize complementary advantages
- Alleviate the cost of prompt engineering
- Stabilize performance on downstream tasks



Prompt Ensembling

- Typical Methods
 - Uniform Averaging
 - Weighted Averaging
 - Majority Voting



Prompt Augmentation

Definition

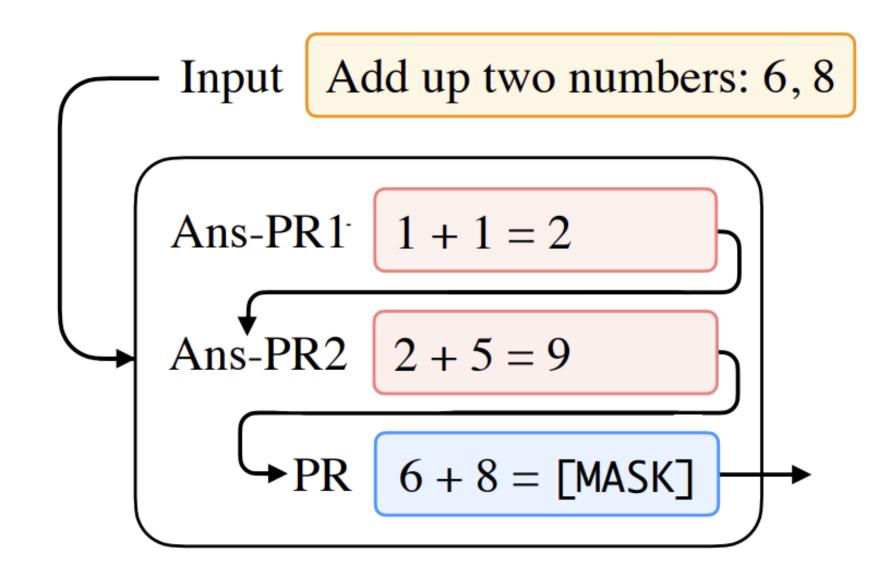
 Help the model answer the prompt that is currently being answered by additional answered prompts

Advantage

 make use of the small amount of information that has been annotated

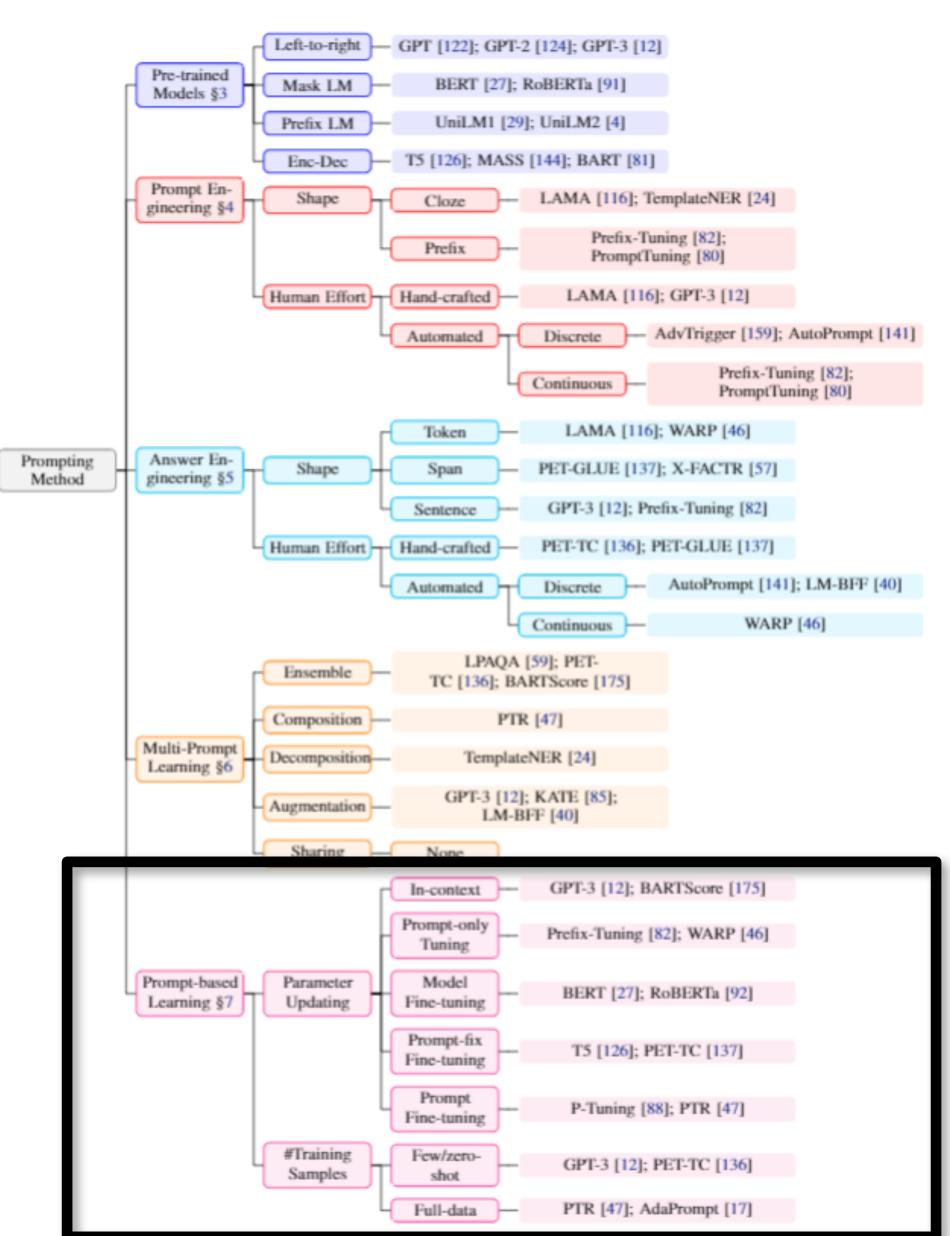
Core step

- Selection of answered prompts
- Ordering of answered prompts



Design Considerations for Prompting

- Pre-trained Model Choice
- Prompt Template Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies



Prompt-based Training Strategies

- Data Perspective
 - How many training samples are used?
- Parameter Perspective
 - □ Whether/How are parameters updated?

Prompt-based Training: Data Perspective

- □ **Zero-shot:** without any explicit training of the LM for the downstream task
- □ Few-shot: few training samples (e.g., 1-100) of downstream tasks
- □ Full-data: lots of training samples (e.g., 10K) of downstream tasks

Prompt-based Training: Parameter Perspective

Strategy	LM Params Tuned	Additional Prompt Params	Prompt Params Tuned	Examples
Promptless Fine- Tuning	Yes	N/A	N/A	BERT Fine-tuning
Tuning-free Prompting	No	No	N/A	GPT-3
Fixed-LM Prompt Tuning	No	Yes	Yes	Prefix Tuning
Fixed-prompt LM Tuning	Yes	No	N/A	PET
Prompt+LM Fine-tuning	Yes	Yes	Yes	PADA

Too many, difficult to select?

Promptless Fine-tuning

Fixed-prompt Tuning

Prompt+LM Fine-tuning

Tuning-free Prompting

Fixed-LM Prompt Tuning

If you have a huge pre-trained language model (e.g., GPT3)

If you have few training samples?

If you have lots of training samples?

Questions?