CS769 Advanced NLP Syntactic Parsing I: Constituency Grammar

Junjie Hu

Slides adapted from Bob, Hao, Dan <u>https://junjiehu.github.io/cs769-spring23/</u>

Goals for Today

- Syntactic Parsing
- Probabilistic Context-Free Grammar (PCFG)
- Supervised PCFG (Generative)
- CYK Decoding Algorithm
- Supervised Span-based Neural Models (Discriminative)
- **Unsupervised** Parsing (Grammar Induction)

Syntactic Parsing

- The process of predicting syntactic representations
- Two types of linguistic structures:

Constituency (aka phrase structure) tree:

Focus on the structure of the sentence

Dependency tree: Focus on relations between words

Constituency Trees

- Internal nodes (or non-terminals) correspond to phrases
 - S: a sentence
 - NP (noun phrase): My dog, a sandwich, ...
 - VP (verb phrase): ate a sausage, ...
 - PP (prepositional phrases): with a friend, in a car, ...
- Nodes immediately above words are part-of-speech tags (or preterminals).
 - PN: pronoun
 - D: determiner
 - V: verb
 - N: noun
 - P: preposition

Bracketing notation

- Often convenient to represent a tree as a bracketed sequence:
- In principle, constituency tree can be an n-nary tree, however, it is easy to convert it to a binary tree (by adding a null non-terminal \mathcal{O}). By convention, we often just represent the structure as a binary tree.

Constituency is not always clear

- Coordination:
 - Example: He went to and came from the store.
- Phonological reduction:
 - I will go \rightarrow I'll go
 - I want to go \rightarrow I wanna go
 - A le centre \rightarrow au centre DT NN PP The velocity IN NP_{pl} f the seismic waves La velocité des ondes sismiques

Dependency Trees

- Nodes are words (along with part-of-speech tags)
- Directed arcs encode syntactic dependencies between words
- Labels are types of relations between words:
 - **root**: root of the tree, usually points to a verb
 - **poss**: possessive
 - dobj: direct object
 - **nsub**: (noun) subject

Dependency parsing

- Recover shallow semantics
- Shallow semantic information can be (approximately) derived from syntactic information
 - Subjects (nsubj) are often agents: initiators / doers of an action
 - Direct objects (dobj) are often patients: affected entities
- But not always true. Even for agents and patients, consider:
 - Mary is baking a cake in the oven
 - A cake is baking in the oven
- In general, it is not trivial even for the most shallow forms of semantics
 - e.g., prepositions: *in* can encode direction, position, temporal information, ...

Constituency ↔ Dependency

• Constituency trees can (potentially) \rightarrow dependency trees

• Dependency trees can (potentially) \rightarrow constituency trees

Context Free Grammar (CFG) & Probabilistic CFG

Context-free grammars (CFG)

• Context-free grammars (CFG): a formalism for parsing.

<u>Grammar (</u>	<u>CFG)</u>	Lexicon
$ROOT \rightarrow S$	$NP \rightarrow NP PP$	$NN \rightarrow interest$
$S \rightarrow NP VP$	$VP \rightarrow VBP NP$	NNS \rightarrow raises
$NP \rightarrow DT NN$	$VP \rightarrow VBP NP PP$	$VBP \rightarrow interest$
$NP\toNN\;NNS$	$PP \rightarrow IN NP$	$VBP \rightarrow raises$

• Other (non-CF) grammar formalism: LFG, HPSG, TAG, CCG, ...

. . .

<u>Grammar (CFG)</u>	<u>Lexicon</u>
$S \rightarrow NP VP$	$N \rightarrow girl$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$	$PN \rightarrow I$
$VP \rightarrow VP PP$	$V \rightarrow saw$
	$V \rightarrow ate$
NP \rightarrow NP PP NP \rightarrow D N NP \rightarrow PN	$P \rightarrow with$
	$P \rightarrow in$
	D→a
$PP \rightarrow P NP$	$D \rightarrow the$

$N \rightarrow girl$
$N \rightarrow telescope$
$N \rightarrow sandwich$
$PN \rightarrow I$
$V \rightarrow saw$
$V \rightarrow ate$
$P \rightarrow with$
$P \rightarrow in$
D → a
$D \rightarrow the$

<u>Grammar (CFG)</u>	<u>Lexicon</u>
$S \rightarrow NP VP$	$N \rightarrow girl$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$	PN → I
$VP \rightarrow VP PP$	$V \rightarrow saw$
	$V \rightarrow ate$
$NP \to NP PP$	$P \rightarrow with$
$NP \rightarrow D N$	$P \rightarrow in$
$INF\toFIN$	$D \rightarrow a$
$PP \rightarrow P NP$	$D \rightarrow the$

<u>Grammar (CFG)</u>	<u>Lexicon</u>
$S \rightarrow NP VP$	$N \rightarrow girl$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$	$PN \rightarrow I$
$VP \rightarrow VP PP$	$V \rightarrow saw$
	$V \rightarrow ate$
$NP \to NP PP$	$P \rightarrow with$
$NP \rightarrow D N$	$P \rightarrow in$
$INP \to PIN$	$D \rightarrow a$
$PP \rightarrow P NP$	$D \rightarrow the$

<u>Grammar (CFG)</u>	<u>Lexicon</u>
$S \rightarrow NP VP$	$N \rightarrow girl$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$	$PN \rightarrow I$
$VP \rightarrow VP PP$	$V \rightarrow saw$
	$V \rightarrow ate$
$NP \rightarrow NP PP$	$P \rightarrow with$
$NP \rightarrow D N$	$P \rightarrow in$
$NP \rightarrow PN$	$D \rightarrow a$
$PP \rightarrow P NP$	$D \rightarrow the$

<u>Grammar (CFG)</u>	<u>Lexicon</u>
$S \rightarrow NP VP$	$N \rightarrow girl$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$	$PN \rightarrow I$
$VP \rightarrow VP PP$	$V \rightarrow saw$
	$V \rightarrow ate$
$NP \rightarrow NP PP$ $NP \rightarrow D N$	$P \rightarrow with$
	$P \rightarrow in$
$NP \rightarrow PN$	$D \rightarrow a$
$PP \rightarrow P NP$	$D \rightarrow the$

<u>Grammar (CFG)</u>	<u>Lexicon</u>
$S \rightarrow NP VP$	$N \rightarrow girl$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$	$PN \rightarrow I$
$VP \rightarrow VP PP$	$V \rightarrow saw$
	$V \rightarrow ate$
$NP \to NP PP$	$P \rightarrow with$
$NP \rightarrow D N$ $NP \rightarrow PN$	$P \rightarrow in$
	$D \rightarrow a$
	$D \rightarrow the$

<u>Grammar (CFG)</u>	Lexicon
$S \to NP VP$	$N \rightarrow girl$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$	$PN \rightarrow I$
$VP \rightarrow VP PP$	$V \rightarrow saw$
	$V \rightarrow ate$
$NP \to NP PP$	$P \rightarrow with$
$\frac{NP \rightarrow D N}{NP \rightarrow PN}$	$P \rightarrow in$
	D → a
$PP \rightarrow P NP$	$D \rightarrow the$

<u>Grammar (CFG)</u>	<u>Lexicon</u>
$S \to NP VP$	$N \rightarrow girl$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$	$PN \to I$
$VP \rightarrow VP PP$	$V \rightarrow saw$
	$V \rightarrow ate$
$NP \rightarrow NP PP$ $NP \rightarrow D N$	$P \rightarrow with$
	$P \rightarrow in$
$INP \to PIN$	$D \rightarrow a$
$PP \rightarrow P NP$	$D \rightarrow the$

<u>Grammar (CFG)</u>	<u>Lexicon</u>
$S \rightarrow NP VP$	$N \rightarrow girl$
	$N \rightarrow telescope$
$VP \rightarrow V$	$N \rightarrow sandwich$
$VP \rightarrow V NP$	$PN \to I$
$VP \rightarrow VP PP$	$V \rightarrow saw$
	$V \rightarrow ate$
$NP \rightarrow NP PP$ $NP \rightarrow D N$ $NP \rightarrow PN$	$P \rightarrow with$
	$P \rightarrow in$
	$D \rightarrow a$
	$D \rightarrow the$

Probabilistic context-free grammars (PCFG)

- CFG: A 4-tupe (N, Σ, R, S) :
 - N: a set of non-terminal symbols
 - Σ : a set of terminal symbols (disjoint from N)
 - S: a designated start symbol and a member of N
 - R: a set of rules, each of the form $A \to s$, where A is a non-terminal, s is a string of symbols, $A \in N, s \in (\Sigma \cup N) *$ $S \to A, A \in N$ $A \to BC, A \in N, B, C \in N \cup \Sigma \leftarrow$ Without loss of generality, only consider binary branching; Chomsky Normal Form $A \to \alpha, \alpha \in \Sigma$
- **PCFG** adds a top-down production probability per rule.
 - Model the probability of each rule: P(A
 ightarrow s)

$$\forall A \to s \in R : 0 \le P(A \to s) \le 1$$

$$\forall A \in N : \sum_{\substack{s \text{ where } A \to s \in R}} P(A \to s) = 1$$

	$S\toNPVP$	1.0	(NP a girl) (VP ate a sandwich)	$N \to girl$	0.2
	$VP \rightarrow V$	0.2		N → telescope	0.7
	$VP\toV\;NP$	0.4	(V ate) (NP a sandwich)	$N \rightarrow$ sandwich	0.1
Now we can score	$VP\toVP\;PP$	0.4	(VP saw a giri) (PP with a telescope)	$PN \to I$	1.0
a tree as a product of probabilities			. ,	$V \rightarrow saw$	0.5
corresponding to	$NP\toNP\;PP$	0.3	(NP a girl) (PP with a sandwich)	$V \rightarrow ate$	0.5
the used rules!	$NP \rightarrow D N$	0.5	(D a) (N sandwich)	$P \rightarrow with$	0.6
	$NP \rightarrow PN$	0.2		$P \rightarrow in$	0.4
				$D \rightarrow a$	0.3
	$PP \rightarrow P NP$	1.0	(P with) (NP a sandwich)	$D \to the$	0.7

$S\toNP\:VP$	1.0	$N \rightarrow girl$	0.2
$VP \rightarrow V$	0.2	N → telescope	0.7
$VP \rightarrow V NP$	0.4	N → sandwich	0.1
$VP \to VP \; PP$	0.4	$PN \rightarrow I$	1.0
		$V \rightarrow saw$	0.5
$NP \rightarrow NP PP$	0.3	$V \rightarrow ate$	0.5
$NP \rightarrow D N$	0.5	$P \rightarrow with$	0.6
$NP \rightarrow PN$	0.2	P → <i>in</i>	0.4
		$D \rightarrow a$	0.3
$PP \rightarrow P NP$	1.0	$D \rightarrow the$	0.7

P(*T*) = 1.0 *

$S\toNP\:VP$	1.0	$N \rightarrow girl$	0.2
$VP \rightarrow V$	0.2	N → telescope	0.7
$VP \rightarrow V NP$	0.4	N → sandwich	0.1
$VP \to VP \; PP$	0.4	$PN \rightarrow I$	1.0
		$V \rightarrow saw$	0.5
$NP \rightarrow NP PP$	0.3	$V \rightarrow ate$	0.5
$NP \rightarrow D N$	0.5	$P \rightarrow with$	0.6
$NP \rightarrow PN$	0.2	P → <i>in</i>	0.4
		$D \rightarrow a$	0.3
$PP \rightarrow P NP$	1.0	$D \rightarrow the$	0.7

P(*T*) = 1.0 * 0.2 *

$S\toNPVP$	1.0	N → <i>girl</i>	0.2
$VP \rightarrow V$	0.2	N → telescope	0.7
$VP \rightarrow V NP$	0.4	N → sandwich	0.1
$VP \to VP \; PP$	0.4	$PN \rightarrow I$	1.0
		$V \rightarrow saw$	0.5
$NP\toNP\;PP$	0.3	$V \rightarrow ate$	0.5
$NP \rightarrow D N$	0.5	$P \rightarrow with$	0.6
$NP \rightarrow PN$	0.2	$P \rightarrow in$	0.4
		$D \rightarrow a$	0.3
$PP \rightarrow P NP$	1.0	$D \rightarrow the$	0.7

P(*T*) = 1.0 * 0.2 * 1.0 *

S	1.0	
NP 0.2 PN	VP 0.4	
1.0 V I	Ν	Р

 $S \rightarrow NP VP$ $N \rightarrow girl$ 0.2 1.0 $N \rightarrow$ 0.7 telescope $VP \rightarrow V$ 0.2 $N \rightarrow$ 0.1 $VP \rightarrow V NP$ 0.4 sandwich $PN \rightarrow I$ 1.0 $VP \rightarrow VP PP$ 0.4 $V \rightarrow saw$ 0.5 $V \rightarrow ate$ 0.5 $NP \rightarrow NP PP$ 0.3 $P \rightarrow with$ 0.6 0.5 $NP \rightarrow D N$ $\mathsf{P} \rightarrow in$ 0.4 $NP \rightarrow PN$ 0.2 0.3 $D \rightarrow a$ 0.7 $PP \rightarrow P NP$ $D \rightarrow the$ 1.0

P(*T*) = 1.0 * 0.2 * 1.0 * 0.4 *

$S\toNPVP$	1.0	$N \to girl$	0.2
$VP \rightarrow V$	02	N → telescope	0.7
$VP \rightarrow V NP$	0.2	N → sandwich	0.1
$VP \to VP \; PP$	0.4	$PN \rightarrow I$	1.0
		$V \rightarrow saw$	0.5
$NP \rightarrow NP PP$	0.3	$V \rightarrow ate$	0.5
$NP \rightarrow D N$	0.5	$P \rightarrow with$	0.6
$NP \rightarrow PN$	0.2	$P \rightarrow in$	0.4
		$D \rightarrow a$	0.3
$PP \rightarrow P NP$	1.0	$D \rightarrow the$	0.7

P(*T*) = 1.0 * 0.2 * 1.0 * 0.4 * 0.5 *

 $S \rightarrow NP VP$ $N \rightarrow girl$ 0.2 1.0 $N \rightarrow$ 0.7 telescope $VP \rightarrow V$ 0.2 $N \rightarrow$ 0.1 $VP \rightarrow V NP$ 0.4 sandwich $PN \rightarrow I$ 1.0 $VP \rightarrow VP PP$ 0.4 $V \rightarrow saw$ 0.5 0.5 $V \rightarrow ate$ $NP \rightarrow NP PP$ 0.3 $P \rightarrow with$ 0.6 0.5 $NP \rightarrow D N$ $P \rightarrow in$ 0.4 $NP \rightarrow PN$ 0.2 0.3 $D \rightarrow a$ $D \rightarrow the$ 0.7 $PP \rightarrow P NP$ 1.0

P(T) = 1.0 * 0.2 * 1.0 * 0.4 * 0.5 * 0.3 *

PCFG Supervised Learning & Decoding

PCFG Supervised Learning

- A treebank: a collection of sentences annotated with constituency trees
 - Penn Treebank: (X,T) pairs

- PCFG: a generative model, maximizing the joint probability of a sentence given a tree.
 - If we constraint the search space to be all valid trees that can generate the sentence, this becomes:

$$\max P(X,T) = \max P(X|T)P(T) = \max_{T \in \operatorname{GEN}(X)} P(X|T)P(T)$$

PCFG Supervised Learning

• Estimate probability of each rule by maximum likelihood estimation:

$$P(T) = \sum_{A \to s \in R} P(A \to s), \quad T \in \operatorname{GEN}(X)$$

$$P(A \to s) = \frac{Count(A \to s)}{Count(A)}$$

times the rule was used in the data# times the nonterminal was used in the data

- Smoothing is helpful (esp. for rules that produce one word)
- If we don't have training data, use EM algorithm to estimate the probability

HMM vs PCFG

HMM: Linear Markov Chain

PCFG: tree

PCFG Decoding

• Brute force solution: enumerate all possible binary trees, score them, find the tree with maximum score

PCFG Decoding

- Brute force solution: enumerate all possible binary trees, score them, find the tree with maximum score
- For a sentence of n words, there are (n-1)! possible binary trees. Each word may have more than 1 possible POS tags

ullet
PCFG Decoding: CYK Algorithm

PCFG Decoding: CYK Algorithm

PCFG CYK Decoding

- A treebank: a collection of sentences annotated with constituency trees
 - Penn Treebank

• Estimate probability of each rule by maximum likelihood estimation:

$$P(A \to s) = \frac{Count(A \to s)}{Count(A)}$$

times the rule was used in the data

times the nonterminal was used in the data

• Smoothing is helpful (esp. for rules that produce one word)

PCFG Decoding: CYK Algorithm

- The score (or unnormalized probability) of a constituent with a non-terminal is often called inside probability
 - Computed by dynamic programming

 $s_{\text{label}}(i, j, A) = \max_{k, B, C} P(A \to BC) \times s_{\text{label}}(i, k, B) \times s_{\text{label}}(k+1, j, C)$

Semiring Conversion

- The score (or unnormalized probability) of a constituent with a non-terminal is often called inside probability
 - Computed by dynamic programming
 - Numerically unstable

 $s_{\text{label}}(i, j, A) = \max_{k, B, C} P(A \to BC) \times s_{\text{label}}(i, k, B) \times s_{\text{label}}(k+1, j, C)$

• Define the minimum cost score, and rewrite the scores

$$s_{\text{label}}'(i, j, A) = -\log s_{\text{label}}(i, j, A)$$
$$s_{\text{label}}'(i, j, A) = \min_{k, B, C} \left(-\log P(A \to BC) + s_{\text{label}}'(i, k, B) + s_{\text{label}}'(k+1, j, C)\right)$$

Semiring Parsing

"Add"
$$\bigoplus$$
 "Multiply" \bigotimes
 $s_{\text{label}}(i, j, A) = \max_{k, B, C} P(A \to BC) \times s_{\text{label}}(i, k, B) \times s_{\text{label}}(k + 1, j, C)$
 $s'_{\text{label}}(i, j, A) = \min_{k, B, C} \left(-\log P(A \to BC) + s'_{\text{label}}(i, k, B) + s'_{\text{label}}(k + 1, j, C) \right)$

	weights	\oplus	\otimes	0	1
total prob	[0, 1]	+	х	0	1
max prob	[0, 1]	max	X	0	1
min -logp	[0, ∞]	min	+	∞	0
log prob	[-∞, 0]	logsumexp	+	-∞	0
recognizer	T/F	or	and	F	Т

Semiring is an algebraic structure in ring theory: <u>https://en.wikipedia.org/wiki/Semiring</u>

Great News: It works (better than random)

Bad News: It is even worse than right branching. Why?

Supervised Parsing: Span-based Neural Models

 $P(Y_{i:j} = c | X_{i:j}) = w_c \cdot F_c(X_{i:j})$

Stern et. al 2016. A Minimal Span-Based Neural Constituency Parser

 $s_{ ext{label}}(i,j,\ell)$

Scoring a span from the i-th word to j-th word being the label of ℓ

Pronoun to the left

Training: Margin Loss

• Find the best tree using the current model

$$\widehat{T} = \operatorname*{argmax}_{T} \left[s_{\text{tree}}(T) \right].$$

• Margin loss:

$$\max\left(0,\ 1 - s_{\text{tree}}(T^*) + s_{\text{tree}}(\widehat{T})\right)$$

Decoding: CYK

- Same as counting-based PCFG
- Use the learned scores for possible spans in the following chart

Improves over non-neural methods

F1 (English, dev)

SoTA Self-attention-based Parser

- Use the Transformer encoder instead of Bi-LSTM
 - Split the word hidden vector from Transformer into two half vectors $h_i = [\overrightarrow{h_i}; \overleftarrow{h_i}]$
 - Replace the forward and backward hidden vectors of Bi-LSTM by the new vectors

Kitaev et al. 2018. Constituency Parsing with a Self-Attentive Encoder

Historical Trends on Penn Treebank

Single Parser

Multi-Modal / Additional Data

Unsupervised Parsing (Grammar Induction)

Grammar Induction (Unsupervised Parsing)

Learning a set of (probabilistic) grammar rules

Typical grammar induction methods

unsupervised constituency and dependency parsing

Explosion of ambiguity

Mystery: humans learn to parse without learning to parse (from labels)

Grammar Induction

Neural PCFGs

Neural parameterization for PCFGs

$$\pi_{T \to w} = \text{NEURALNET}(\mathbf{w}_T) = \frac{\exp(\mathbf{u}_w^\top f(\mathbf{w}_T))}{\sum_{w' \in \Sigma} \exp(\mathbf{u}_{w'}^\top f(\mathbf{w}_T))}$$

- same training method: MLE
- Where's the magic?
 - Expectation-Maximization (EM) algorithm

Neural L-PCFGs

 You can further improve Neural PCFGs by adding head annotations

Key to the mystery: visual prior?
Visual Prior Grammar Induction

• Visual grounded neural syntax acquisition

Visual Prior Grammar Induction

- Visual grounded neural syntax acquisition
 - Similar results even if the dimension of embeddings get shrunk to 1 or 2.

Model	NP	VP	PP	ADJP	Avg. F_1
Shi2019	79.6	26.2	42.0	22.0	50.4 ± 0.3
Shi2019*	80.5	26.9	45.0	21.3	51.4 ± 1.1
$1, \mathrm{s_{WS}}, \mathrm{c_{ME}}$	77.2	17.0	53.4	18.2	49.7 ± 5.9
$2, \mathrm{s_{WS}}, \mathrm{c_{ME}}$	80.8	19.1	52.3	17.1	51.6 ± 0.6
+HI					
Shi2019	74.6	32.5	66.5	21.7	53.3 ± 0.2
Shi2019*	73.1	33.9	64.5	22.5	51.8 ± 0.3
$1, \mathrm{s_{WS}}, \mathrm{c_{ME}}$	74.0	35.2	62.0	24.2	51.8 ± 0.4
$2, \mathrm{s_{WS}}, \mathrm{c_{ME}}$	73.8	30.2	63.7	21.9	51.3 ± 0.1
+HI+FastText					
Shi2019	78.8	24.4	65.6	22.0	54.4 ± 0.3
Shi2019*	77.3	23.9	64.3	21.9	53.3 ± 0.1
$1, \mathrm{s_{WS}}, \mathrm{c_{ME}}$	76.6	21.9	68.7	20.6	53.5 ± 1.4
$2, \mathrm{s_{WS}}, \mathrm{c_{ME}}$	77.5	22.8	66.3	19.3	53.6 ± 0.2
+HI+FastText	-IN				
Shi2019*	78.3	26.6	67.5	22.1	54.9 ± 0.1
$1, \mathrm{s_M}, \mathrm{c_{MX}}$	79.6	29.0	38.3	23.5	49.7 ± 0.2
$1, \mathbf{s}_{\mathrm{MHI}}, \mathbf{c}_{\mathrm{MX}}$	77.6	45.0	72.3	24.3	57.5 ± 0.1
$1, \mathrm{s_M}, \mathrm{c_{ME}}$	80.0	26.9	62.2	23.2	54.3 ± 0.2
$1, \mathrm{s_{MHI}}, \mathrm{c_{ME}}$	76.5	20.5	63.6	22.7	52.2 ± 0.3
$1, \mathrm{s_{WS}}, \mathrm{c_{ME}}$	77.7	26.3	72.5	22.0	55.5 ± 0.1
$2, \mathrm{s_{WS}}, \mathrm{c_{ME}}$	78.5	26.3	69.5	21.1	55.2 ± 0.1

Visual Prior Grammar Induction

- Recommend readings
 - Visually Grounded Compound PCFGs.
 - Dependency Induction Through the Lens of Visual Perception

Questions?