CS769 Advanced NLP

Morphology &
Sequence Labeling |

Junjie Hu

WISCONSIN

IIIIIIIIIIIIIIIIIIIIIIIIIIII

Slides adapted from Luke, Yulia, Bob
hitps://junjiehu.github.io/cs769-spring23/

https://junjiehu.github.io/cs769-spring23/

Goals for Today

Morphology
Subword Tokenization: BPE
(Generative) Sequence Labeling: Hidden Markov Model

Training & Inference of HMM

|_evels of Linguistic Knowledge

The study of the sounds of human

Phonetics ||, uaq¢
The study of sound systems in
Phonology human language

The study of the formation and
internal structure of words

The study of the formation and
internal structure of sentences

Pragmatics

The study of the meaning of
sentences

The study of the way sentences with
their semantic meanings are used
for particular communicative goals

speech

phonetics

orthography

phonology

"shallower"

"deeper”

morphology

lexemes

syntax

semantics

pragmatics

discourse

Morphology
& Word Tokenization

Morphology: Internal Structure of Words

* Derivational morphology: How new words are created from existing
words

e [grace]

» [[grace]ful]

o [un[[grace]ful]]

 Inflectional morphology: How features relevant to the syntactic
context of a word are marked on that word.

e This student walks.

e These students walk.

e Jhese students walked.

 Compounding: Creating new words by combining existing words.

« With or without space: surfboard, golt ball, blackboard

Morphemes

* Morphemes. Minimal pairings of form and meaning.
* Roots: the “core” of a word that carries its basic meaning
* E.g., apple, walk.

* Affixes (prefixes, suffixes, infixes, and circumfixes).
Morphemes that are added to a root (or a stem) to perform
either derivational or inflectional functions.

e Prefix: un- = negation
o Suffix: -s — plural noun

e Infix: -it- = Spanish name adapted from English, e.g.,
Victor — Victitor

« Circumfix: ge- ... -t = German past participle

Morpnological Parsing

* Input: a word
* Output: the word’s stem(s) and features expressed by other morphemes.

Example:

e geese — goose + N +P|

e goo0ses — goose + V + 3P + 5S¢
« dog — {dog + N + Sg, dog + V}

o leaves — {leaf + N + PI, leave + V + 3P + Sg}

N: Noun; PI: Plural; V: Verb; 3P: 3rd person; Sg: singular

Finite State Transducers

« (: afinite set of states

¢ (o € Q: aspecial start state
o I C (Q: asetof final states

« 2 and A: two finite alphabets

e J[ransitions:

s € X* t e A*

Encodes a set of strings that can be recognized by following paths
from ¢, to some state in I

Tokenization

Some Asian languages have no word boundary, e.g., Chinese

. EEFRIETALESORNETR

German too: Noun-noun compounds
e (Gesundheitsversicherungsgesellschaften

e (Gesundheits-versicherungs-gesellschaften (health
insurance companies)

Spanish clitics: Dar-me-lo (To give me it)

Even English has issues, to a smaller degree: Gregg and
Bob's house

lokenization (Example

Input raw text

Dr. Smith said tokenization of English i1s “harder than you’ve thought.”
When in New York, he paid $12.00 a day for lunch and wondered what it would
be like to work for AT&T or Google, Inc.

Output from Stanford Parser with Part-of-Speech tags: http://
nlp.stanford.edu:8080/parser/index.jsp

Dr./NNP Smith/NNP said/VBD tokenization/NN of/IN English/NNP
is/VBZ "~/ harder/JJR than/IN you/PRP 've/VBP thought/VBN ./.
"/”

When/WRB in/IN New/NNP York/NNP ,/, he/PRP paid/VBD $/$ 12.00/CD
a/DT day/NN for/IN lunch/NN and/CC wondered/VBD what/WP it/PRP
would/MD be/VB like/JJ to/TO work/VB for/IN AT&T/NNP or/CC
Google/NNP ,/, Inc./NNP ./.

10

http://nlp.stanford.edu:8080/parser/index.jsp
http://nlp.stanford.edu:8080/parser/index.jsp

lokenization approaches

* Traditional: Segmenting words that make sense with
grammars/meanings

* For languages with word spaces: spaces, punctuation,
plus rules

* For Chinese etc: large dictionaries, punctuation, plus rules

 Subword-based methods: Segmenting words to max
processing efficient/better

* Split words into subword segments without pre-tokenization
or rules.

11

Subword Tokenization

* Neural systems typically use a relatively small fixed vocabulary

* Real world contains many words

e New words all the time

* For morphologically rich languages, even more so

* But most words are rare (Zipf's Law)
* Note that rare words do not have good corpus statistics

* S0, tokenize words into more frequent subword segments

12

Unsupervised Subword Algorithms

e Use the data to tell us how to tokenize

* Three common algorithms:
* Byte-Pair Encoding (BPE) [Sennrich et al., 2016]
 WordPiece [Schuster and Nakajima, 2012]

* Unigram language modeling tokenization (Unigram) [Kudo,
2018]

* |Learnable tokenizer:
* Training: takes a raw training corpus and induces a vocabulary

* Segmentation: tokenizes a raw test sentence according to the
vocabulary

BPE: https://github.com/rsennrich/subword-nmt

SentencePiece: https://github.com/google/sentencepiece

13

https://github.com/rsennrich/subword-nmt
https://github.com/google/sentencepiece

Byte-Pair Encoding

 Add a special end-of-word symbol “__" (U+2581) or </w> at
the end of each word Iin training corpus

 (Convert words into a set of characters, create an initial
vocabulary

* [teratively merge the most frequent pair of adjacent tokens for
K times

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V<—all unique characters in C # initial set of tokens is characters
fori=1tok do # merge tokens til k£ times
1L, tr < Most frequent pair of adjacent tokens in C
tvew <11 + IR # make new token by concatenating
Ve V+ tyew # update the vocabulary
Replace each occurrence of #7, tg in C with tyzy # and update the corpus

return V

Byte-Pair Encoding (Example)

Example — training corpus:
low low low low low lowest l[owest newer newer newer newer newer newer
wider wider wider new new

low__ low__ low__ low__ low__ lowest__ lowest__ newer_ newer__ newer__
newer__ newer__ newer__ wider__ wider__ wider_ new__ new__

v

corpus vocabulary

5 l ow _ _,d, e, i, 1, n, o, r, s, t, W
2 lowest_

6 newer _

3 wider _

2 new

15

Byte-Pair Encoding (Example)

corpus vocabulary

5 l ow _ _, d, e, 1, 1, n, o, r, s, t, w
2 lowest _

6 newer _

3 wider _

2 new_

Merge erto er

COrpus vocabulary

5 l ow _ ., d, e, 1, 1, n, o, r, s, t, w, er
2 lowest _

6 newer _

3 wider _

2 new_

Byte-Pair Encoding (Example)

corpus vocabulary

5 low _ ., d, e, 1, 1, n, o, r, s, t, w, er
2 l owest_

6 newer _

3 wilder _

2 new_

Mergeer toer

corpus vocabulary

5 l ow _ _,d,e,i,1,n,0, 1, s, t,w, er, er__
2 lowest _

6 newer_

3 wider_

2 new_

17

Byte-Pair Encoding (Example)

corpus vocabulary

5 l ow _ _,d,e,i,1,n,0,r, s, t,w, er, er_
2 lowest_

6 newer_

3 wilder_

2 new_

Merge n e tone

corpus vocabulary

5 l ow _ _,d,e,i,1,n,0, 1, s, t,w, er, er_, ne
2 l owest _

6 ne w er_

3 wilder_

2 ne w _

Byte-Pair Encoding (Example)

* The next merges are:

Merge Current Vocabulary

(ne, w) _,d,e,1,1,n,0, 1, s, t,w, er, er_, ne, new

(1, o) _,d,e,1,1,n,0,1,s,t,w, er, er__, ne, new, lo

(lo, w) _,d,e,1,1,n,0, 1, s, t,w, er, er_, ne, new, lo, low

(new, er_) _,d,e,1,1,n,0, 1, s, t,w, er, er_, ne, new, lo, low, newer__

(low, _) _,d,e,1,1,n,0,1,s, t,w, er, er__, ne, new, lo, low, newer__, low_

+: Usually include frequent words,
and frequent subwords which are often morphemes, e.g., -est or -er

19

Syntax
& Sequence Labeling:
HMM

Seqguence labeling problems

Map a sequence of words to a sequence of labels
* Part-of-speech tagging (Church, 1988; Brants, 2000)
 Named entity recognition (Bikel et al., 1990)

* Jext chunking and shallow parsing (Ramshaw and Marcus,
1995)

 Word alignment of parallel text (Vogel et al., 1996)

 Compression (Conroy and O’Leary, 2001)

* Acoustic models, discourse segmentation, etc.

21

Syntax: Part-of-Speech tagging

 Open classes allow new members through borrowing (e.g., the noun cafe)
and derivation (e.qg., the adjective bounteous from the noun bounty)

 Nouns

* Verbs
 Adjectives
 Adverbs

 Closed classes of words do not allow new members and usually involve
grammatical rather than lexical words.

 Prepositions

e Determiners

e Pronouns
PART OF SPEECH DT

vBZ DT JJ NN

Conjunctions
WORDS This is a simple sentence

Auxiliary verbs

22

Part of speech tagsets

* Penn treebank tagset (Marcus et al., 1993)

Tag Description Example Tag Description Example Tag Description Example

CC coordinating and, but, or PDT predeterminer all, both VBP verb non-3sg eat
conjunction present

CD cardinal number one, two POS possessive ending s VBZ verb 3sg pres eats

DT determiner a, the PRP personal pronoun [, you, he WDT wh-determ. which, that

EX existential ‘there’ there PRPS possess. pronoun vyour, one’s WP wh-pronoun what, who

FW foreign word mea culpa RB adverb quickly WPS wh-possess. whose

IN preposition/ of, in, by RBR comparative faster WRB wh-adverb how, where
subordin-conj adverb

1) adjective vellow RBS superlatv. adverb fastest S dollar sign $

JJR comparative adj bigger RP paricle up, off = pound sign #

JIS superlative ad) wildest SYM symbol +,%, & e~ left quote ‘or

LS listitemmarker [, 2, 0ne TO *w" 1o right quote or

MD modal can, should UH interjection ah, oops (left paren LGt <

NN sing or mass noun llama VB verbbase foom eat) right paren EA 'S

NNS noun, plural llamas VBD verb past tense ate comma

NNP proper noun, sing. IBM VBG verb gerund eating sent-endpunc . ! ?

NNPS proper noun, plu. Carolinas VBN verb past part. eaten sent-mid punc : ;... —-

23

POS tagging (Example)

e System outputs:

* The/DT grand/JJ jury/NN commented/VBD on/IN a/DT
number/NN of/IN other/JJ topics/NNS /.

e There/EX are/VBP 70/CD children/NNS there/RB

* Preliminary/JJ findings/NNS were/VBD reported/VBN in/IN
today/NN ’s/POS New/NNP England/NNP Journal/NNP of/
IN Medicine/NNP ./.

24

Universal Dependencies for All Languages

‘ . .
U Universal Dependencies

Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological features, and syntactic
dependencies) across different human languages. UD is an open community effort with over 300 contributors producing more than 150 treebanks in
90 languages. If you're new to UD, you should start by reading the first part of the Short Introduction and then browsing the annotation guidelines.

Short introduction to UD
UD annotation guidelines
More information on UD:
o How to contribute to UD
o Tools for working with UD
o Discussion on UD
o UD-related events
Query UD treebanks online:
o SETS treebank search maintained by the University of Turku
o PML Tree Query maintained by the Charles University in Prague
o Kontext maintained by the Charles University in Prague
o Grew-match maintained by Inria in Nancy
o INESS maintained by the University of Bergen

Download UD treebanks

Open class words
D

> |>
o
-

—
—
-]
(1

=
o
i
—

PROPN
VERB

Closed class words

ADP
AUX

Other
PUNCT

SYM

25

Why POS tagging?

Goal: resolve ambiguities

Text-to-speech

 Words w/ slightly different pronunciations denoting different
POS, e.qg., record/N —/'rekerd/, record/V — /ro'kbrd/

Lemmatization

e saw/V — see, saw/N — saw

Preprocessing for harder disambiguation problems
* Syntactic parsing

* Semantic parsing

20

Sequence labeling as text classification

. Generative Model (this lecture): Learn joint probability P(X, Y)

 Hidden Markov Models (this lecture)

A

Y =arg max P(x1- - Tn,Y1° Yn)

yloooyn
Vy;, € C

. Discriminative Model (next lecture): Learn conditional probability P(Y | X)

e (Conditional Random Fields

 Neural network-based methods

A

Y =arg max P(Y|X) 1 ¥

e Both trained via Maximum Likelihood Estimation

27

Classic Solution: HMMs

 \We want a model of unobservable (hidden) sequences y and observations x

D00
\\STOPU
0) ()

(1., Y1---Ynt1) = q(STOP|yn) | [a(wilyi—1)e(@:ly:)
1=1

=

'STARTY

where Yo = START and we call q(y'|y) the transition distribution and e(x|y) the emission (or
observation) distribution.

Assumptions:
e Tag/state sequence is generated by a Markov model
« Words are chosen independently, conditioned only on the tag/state

* These are totally broken assumptions: why?

28

Tag predictions depends on context

e Time flies like an arrow

 Fruit flies like a banana
S

/

NP
'

NV
) \ \ \ \

Trme £ les Lke an accow.
Foud fles \\lea O\ _‘COKV\tw\C-.

i
?!‘ :\l / c‘?.'!' /N -'7‘0
-/ \
NP \ P NY

29

HMM Learning and Inference

* Learning by maximum likelihood estimation: transition
q(y'|y) and emissions e(z|y)

n

(1. Tn, Y1 Ynt1) = q(5TOPlyn) | | a(wilyi—1)e(@ily:)
1=1

* Inference (linear time in sentence length!)

o Viterbi:

y*x = argmax p(x1...Tn, Y1---Yni1)

Y1oeYn where y,11 = STOP

e Forward Backward:

p(xy ..z, gi) = Y Y plE@1...Tn,y1..Yn)

Yi---Yi—1 Yi+1---Yn

30

| earning: Maximum Likelihood

* Supervised Learning

* Assume m fully labeled training examples:

(@ yD)i=1--m}

where () =z, ...z, and y? = y; - - -y,

e \What's the maximum likelihood estimate”?

p(Z1.. T, Y1..-Ynt+1) = q(STOP|yy) H yzlyz De(wily:)

qM L yz\yz 1 GML(fEi!yi)

31

| earning: Maximum Likelihood

MLE: counting the co-occurrence of the event

c(y,)

c(yi_layi) GML(:E‘y) - C(y)

c(Yi—1)

QML(yz"yi—l) —

Will these estimates be high quality?
 Which is likely to be more sparse, g or &7

« The emission function, because c(y, x) is more likely to have
sparse values.

Can use all the same smoothing tricks we used for counting-
based language models!

Other approaches: Map low-frequency words to a small, finite
set of units (e.q., prefixes, word classes), and run MLE on new
sequences

32

Named Entity

Recognition (Bickel et. al, 1999)

* (Convert low-frequency words to word classes

Word class Example Intuition

twoDigitNum 90 Two digit year

fourDigitNum 1990 Four digit year
containsDigitAndAlpha A8956-67 Product code
containsDigitAndDash 09-96 Date

containsDigitAndSlash 11/9/89 Date

containsDigitAndComma | 23,000.00 Monetary amount
containsDigitAndPeriod 1.00 Monetary amount,percentage
othernum 456789 Other number

allCaps BBN Organization

capPeriod M. Person name initial

firstWord first word of sentence | no useful capitalization information
initCap Sally Capitalized word

lowercase can Uncapitalized word

other Punctuation marks, all other words

b

33

Inference (Decoding)

Problem: find the most likely (Viterbi) sequence under the model
y*x = argmax p(ri...Tp, Y1---Ynil)
Y1...Yn
Given model parameters, we can score any sequence pair
NNP VBZ NN NNS CD NN

Fed raises Interest rates 0.5 percent

In principle, we can list all possible tag sequences, score each
one, and pick the best one (a.k.a. the Viterbi state sequence)

NNP VBZ NN NNS CD NN = logP =-23
NNP NNS NN NNS CD NN => logP =-29
NNP VBZ VB NNS CD NN => IlogP =-27

34

The State Lattice/Trellis: Viterbi

g@xﬁdm) ® ® ® ®

71 P/@ (raises|V) g(interest|V) e(STOPI|V)

@ q(VIV) @

Yoone(rates|J) 4\5\

©@ © O O
® ® ® ©

START Fed raises interest rates STOP

- Brute force approach: enumerate n* possible tag sequences

35

Dynamic Programming!
 Focus on max, consider special case of n=2

» Define m(4,y;) to be the max score of a sequence of length 4
ending in tag y;

max q(STOP|y2)q(yz2|y1)e(z2|y2)q(y1 | START)e(z1|y1)

Y1.,Yy2

= max q(STOP|yz)e(x2|y2) max q(y1|START)q(y2|y1)e(w1|y1)

— n;ax q(STOP|ys)e(xa|y2)m(2,y2)

given that m(2,y2) = IQ/?X q(y1|START)q(y2|y1)e(z1|y1)

 What about the general case”? (Consider n=3, etc...)

36

Dynamic Programming!
General case

Define (¢, y;) to be the max score of a sequence of length ¢
ending in tag vy;

w(i,y;) = max p(Ti...T;,Y1...Y;)

Yyi...Yi—1
= max e(Z;|y:)q(Yi|Yi—1) ylel.gxdp(a:l T, Y1 Yie1)
Yi—1 ¢
— r;;‘c_lice(:ci vi)q(Yilyi-1) w(i—1,y;_1)

We now have an efficient algorithm. Start with =0 and work your
way to the end of the sentence!

37

START

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Fruit

m(1,N)

m(1,V)

(1, IN)

Viterbi (Example)

Yi—1

Flies

m(2,N)

Like

(3,N)

Bananas

w(2,V)

m(4,N)

m(3,V)

(2, IN)

w(4,V)

m(3,IN)

STOP

(4, IN)

38

START

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Fruit

m(1,N)

=0.03

m(1,V)

=0.01

m(1,IN)

=0

Viterbi (Example)

Yi—1

Flies

m(2,N)

Like

m(3,N)

Bananas

m(2,V)

(4,N)

m(3,V)

m(2,IN)

m(4,V)

m(3,IN)

STOP

m(4,IN)

39

Fruit

m(1,N)

Viterbi (Example)

Flies

Like

=0.03

m(1,V)

START

=0.01

m(1,IN)

=0

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Yi—1

m(2,N)

m(3,N)

=0.005

w(2,V)

m(3,V)

m(2,IN)

m(3,IN)

Bananas

m(4,N)

w(4,V)

(4, IN)

STOP

40

Fruit

(1,N)

=0.03

m(1,V)

START

=0.01

m(1,IN)

=0

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Viterbi (Example)

Yi—1

Flies

m(2,N)

Like

m(3,N)

=0.005

w(2,V)

=0.007

m(3,V)

m(2,IN)

m(3,IN)

=0

Bananas

(4,N)

m(4,V)

(4, IN)

STOP

41

Fruit

m(1,N)

Viterbi (Example)

Flies

=0.03

m(1,V)

START

=0.01

m(1,IN)

=0

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Yi—1

m(2,N)

Like

(3,N)

=0.005

m(2,V)

=0.0001

m(3,V)

=0.007

m(2,IN)

=0.0007

m(3,IN)

=0

=0.0003

Bananas

(4,N)

w(4,V)

(4, IN)

STOP

42

Viterbi (Example)

Fruit

m(1,N)
=0.03

n(1,V)
=0.01

START

(1,IN)
=0

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Yi—1

Flies Like Bananas
m(2,N) m(3,N) | m(4,N)
=0.005 =0.0001 =0.00003
w(2,V) m(3,V) w(4,V)
=0.007 =0.0007 =0.00001

m(2,IN) m(3,IN) (4,IN)
=0 =0.0003 =0

STOP

43

Fruit

m(1,N)

Viterbi (Example)

Flies

=0.03

m(1,V)

START

=0.01

(1, IN)

=0

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Yi—1

m(2,N)

Like

=0.005

m(3,N)

m(2,V)

=0.0001

=0.007

m(3,V)

(2, IN)

=0.0007

=0

m(3,IN)

=0.0003

Bananas

m(4,N)
=0.00003

m(4,V)
=(0.00001

(4, IN)
=0

STOP

44

Viterbi (Example)

Fruit Flies Like Bananas
m(1,N) m(2,N) m(3,N) m(4,N)
=0.03 =0.005 =0.0001 =0.00003
'n_c o
< (1, V) (2,V) (3,V) (4,V) O
7 =0.01 =0.007 =0.0007 =0.00001 \
m(1,IN) (2,IN) m(3,IN) m(4,IN)
=0 =0 =0.0003 =0

bp(¢, yi) = arg max e(x;|vy:)q(yi|yi—1)m(¢ — 1, yi—1)

Yi—1

Why is this not a greedy algorithm” Why does this find max P(.)?

45

Viterbi Algorithm

* Dynamic programming (for all z)

(i, y;) = ylr.I.l.;C}X_1p($l XYL Yi)

* [terative computation

| 0 otherwise

ﬂ-(Oa yO) = <

Fori=1...n:

(4, yi) = max e(z;|y:)q(Yilyi—1)7(t — 1, yi—1)

Yi—1

* Store back pointers:

bp(t,y;) = arg max e(x;|y;)q(yi|yi—1)m (¢ — 1, yi—1)

Yi—1

« What is the final solution? bp(n + 1, STOP)

46

Viterbi Algorithm: Time complexity

* Linear in sentence length n

* Polynomial in the number of possible tags K

(4, ys) = max e(@;|y:)q(yi|yi—1)m(e — 1,4i-1)

Yi—1

iterate over all possible tags

* Specifically:

O(n|K|) entries in 7 (%, y;)

O(|K]|) time to compute each 7 (i, y;)

e Jotal runtime:

O(n|KJ?)

47

Questions?

