CS769 Advanced NLP
 Attention and Transformer

Junjie Hu

Slides adapted from Graham, Sergey https://junjiehu.github.io/cs769-spring23/

Goals for Today

- Brief Introduction to Attention
- Transformer (Five Key Components)
- Advanced Training And Applications of Attention

Encoder-decoder Models

 (Sutskever et al. 2014)
Encoder

Decoder

Sentence Representations Problem!

It's not ideal to compress the meaning of a sentence with variable length into a single vector.

- But what if we could use multiple vectors, based on the length of the sentence.
this is an example

this is an example

Attention

Basic Idea of Attention

- Embed the source elements (e.g., English words) into a dictionary of (key, value) vectors
- When a query of a target element (e.g., a French word), pick relevant source elements by comparing query and keys
- Summarize the relevant values into a context vector

Basic Idea

(Bahdanau et al. 2015)

- Attention is first used in machine translation
- Encode each word in the sentence into a vector
- When decoding, perform a linear combination of these vectors, weighted by "attention weights"
- Use this combination in picking the next word
- In a sequence-to-sequence model, we sometimes call the attention from the target hidden vector (query) to all the source vectors (keys) as "target-to-source cross attention".

Attention: "pick" at the input

Intuition: Send the most relevant h_{t} by $\arg \max _{t} e_{t, l}$ to step l, however argmax operation is not differentiable!

$$
\begin{aligned}
\alpha_{\cdot, l} & =\operatorname{softmax}\left(e_{\cdot, l}\right) \\
\alpha_{t, l} & =\frac{\exp \left(e_{t, l}\right)}{\sum_{t^{\prime}} \exp \left(e_{t^{\prime}, l}\right)}
\end{aligned}
$$

$$
\text { Let } a_{l}=\sum_{t} \alpha_{t, l} h_{t} \rightarrow \text { approximate } h_{t} \quad \text { Attention score for (encoder) step } t \text { to (decoder) step } l
$$

with the maximum attention

Attention (Example)

A Graphical Example

Attention Score Functions (1)

- \boldsymbol{q} is the query and \boldsymbol{k} is the key
- Multi-layer Perceptron (Bahdanau et al. 2015)

$$
a(\boldsymbol{q}, \boldsymbol{k})=\boldsymbol{w}_{2}^{\top} \tanh \left(W_{1}[\boldsymbol{q} ; \boldsymbol{k}]\right)
$$

- Flexible, often very good with large data
- Bilinear (Luong et al. 2015)

$$
a(\boldsymbol{q}, \boldsymbol{k})=\boldsymbol{q}^{\boldsymbol{\top}} W \boldsymbol{k}
$$

Attention Score Functions (2)

- Dot Product (Luong et al. 2015)

$$
a(\boldsymbol{q}, \boldsymbol{k})=\boldsymbol{q}^{\top} \boldsymbol{k}
$$

- No parameters! But requires sizes to be the same.
- Scaled Dot Product (Vaswani et al. 2017)
- Problem: scale of dot product increases as dimensions get larger
- Fix: scale by size of the vector

$$
a(\boldsymbol{q}, \boldsymbol{k})=\frac{\boldsymbol{q}^{\top} \boldsymbol{k}}{\sqrt{|\boldsymbol{k}|}}
$$

Transformer:

"Attention is All You Need"

(Vaswani et al. 2017)

Summary of the "Transformer"
 (Vaswani et al. 2017)

- A sequence-tosequence model based entirely on attention
- Strong results on translation, a wide variety of other tasks
- Fast: only matrix multiplications

Transformers

- A few key components to make Transformer work.

1. Self-attention - allows parallel computing of all tokens
2. Multi-headed attention - allows querying multiple positions at each layer
3. Position encoding - adds position information to each token
4. Adding nonlinearities - combines features from a self-attention layer
5. Masked decoding - prevents attention lookups in the future tokens

Self Attention
 (Cheng et al. 2016, Vaswani et al. 2017)

- Intuition: Each element in the sentence attends to all elements including itself \rightarrow context sensitive encodings!
- Each element will be used as key, value and query in self-attention

Self-Attention

Example to compute the attention context for the l-th token

$$
\begin{aligned}
a_{l} & =\sum_{t} \alpha_{l, t} v_{t} \\
\alpha_{l, t} & =\exp \left(e_{l, t}\right) / \sum_{t^{\prime}} \exp \left(e_{l, t^{\prime}}\right) \\
e_{l, t} & =q_{l} \cdot k_{t} \\
v_{t} & =W_{v} h_{t} \\
k_{t} & =W_{k} h_{t} \quad W_{v}, W_{k}, W q \in \mathbb{R}^{d \times d} \\
q_{t} & =W_{q} h_{t}, \quad v_{t}, k_{t}, q_{t}, h_{t} \in \mathbb{R}^{d},
\end{aligned}
$$

this is not a recurrent model!
but still weight sharing:

$$
h_{t}=\sigma\left(W_{\text {shared weights at all time steps }} x_{t}+b\right)
$$

(or any other nonlinear function)

Self-Attention

Self-Attention

A keep repeating until we've processed this enough
at the end, somehow decode it into an answer (more on this later)

Multi-headed Attention

- Idea: multiple attention "heads" focus on different parts of the sentence
- e.g. Different heads for "copy" vs regular (Allamanis et al. 2016)

	Target		Attention Vectors	λ
m_{1}	set	$\begin{array}{r} \boldsymbol{\alpha}= \\ \boldsymbol{\kappa}= \end{array}$	$\begin{aligned} & <s>\{\text { this. use Browser Cache }=\text { use Browser Cache; }\}</ s> \\ & <s>\{\text { this. use Browser Cache }=\text { use Browser Cache; \}</s } \end{aligned}$	0.012
m_{2}	use	$\begin{array}{r} \boldsymbol{\alpha}= \\ \boldsymbol{\kappa}= \end{array}$	```<s> { this . use Browser Cache = use Browser Cache;;}<<s> <s> { this . use Browser Cache = use Browser Cache;;}</s>```	0.974
m_{3}	browser	$\begin{array}{r} \boldsymbol{\alpha}= \\ \boldsymbol{\kappa}= \end{array}$	$<s>\{$ this. use Browser Cache $=$ use Browser Cache; $\}</ s\rangle$ $<s>\{$ this. use Browser Cache $=$ use Browser Cache; \}</s>	0.969
m_{4}	cache	$\begin{array}{r} \boldsymbol{\alpha}= \\ \boldsymbol{\kappa}= \end{array}$	$<s>\{$ this. use Browser Cache = use Browser Cache; $\}</ s>$ $<s>\{$ this. use Browser Cache $=$ use Browser Cache; \}</s>	0.583
m_{5}	End	$\begin{array}{r} \boldsymbol{\alpha}= \\ \boldsymbol{\kappa}= \end{array}$	$\begin{aligned} & <s>\{\text { this. use Browser Cache }=\text { use Browser Cache ; }\}</ \text { s> } \\ & <s>\{\text { this. use Browser Cache }=\text { use Browser Cache; }\}</ \text { s }> \end{aligned}$	0.066

- Or multiple independently learned
 heads (Vaswani et al. 2017)

- Or one head for every hidden node! (Choi et al. 2018)

Multi-head attention

Compute weights independently for each head
$e_{l, t, i}=q_{l, i} \cdot k_{l, i}$
$\alpha_{l, t, i}=\exp \left(e_{l, t, i}\right) / \sum_{t^{\prime}} \exp \left(e_{l, t^{\prime}, i}\right)$
$a_{l, i}=\sum_{t} \alpha_{l, t, i} v_{t, i}$

Multi-head attention

Compute weights independently for each head
$e_{l, t, i}=q_{l, i} \cdot k_{l, i}$
$\alpha_{l, t, i}=\exp \left(e_{l, t, i}\right) / \sum_{t^{\prime}} \exp \left(e_{l, t^{\prime}, i}\right)$
$a_{l, i}=\sum_{t} \alpha_{l, t, i} v_{t, i}$

Multi-head attention

$$
a_{l}=\left[\begin{array}{c}
a_{l, I} \\
\cdot \\
\cdot \\
\cdot \\
a_{l, 2} \\
a_{l, 1}
\end{array}\right] \in \mathbb{R}^{d}, \quad a_{l, i} \in \mathbb{R}^{\frac{d}{I}}
$$

where I is the number of heads. Around 8 heads seems to work pretty well for big models

Compute weights independently for each head
$e_{l, t, i}=q_{l, i} \cdot k_{l, i}$
$\alpha_{l, t, i}=\exp \left(e_{l, t, i}\right) / \sum_{t^{\prime}} \exp \left(e_{l, t^{\prime}, i}\right)$
$a_{l, i}=\sum_{t} \alpha_{l, t, i} v_{t, i}$

Self-attention is still linear

- Every self-attention "layer" is a linear transformation of the previous layer (with non-linear attention weights)
- This is not very expressive to learn from the complex data

Alternating self-attention \& nonlinearity

- Each transformer layer contains a multi-head self-attention layer and a feedforward layer.
- We alternate self-attention and non-linear layer N times, namely stack N transformer layers.

Positional encoding

what we see:
he hit me with a pie
what naïve self-attention sees:

a pie hit me with he
a hit with me he pie
he pie me with a hit
most alternative orderings are nonsense, but some change the meaning in general the position of words in a sentence carries information!

Idea: add some information to the representation at the beginning that indicates where it is in the sequence!
$h_{t}=f\left(x_{t}, t\right)$

Positional encoding: sin/cos

Naïve positional encoding: just append t to the input $\quad \bar{x}_{t}=\left[\begin{array}{c}x_{t} \\ t\end{array}\right]$
This is not a great idea, because absolute position is less important than relative position

we want to represent position in a way that tokens with similar relative position have similar positional encoding
Idea: what if we use frequency-based representations?
"even-odd" indicator
$p_{t}=\left[\begin{array}{c}\sin \left(t / 10000^{2 * 1 / d}\right) \\ \cos \left(t / 10000^{2 * 1 / d}\right) \\ \sin \left(t / 10000^{2 * 2 / d}\right) \\ \cos \left(t / 10000^{2 * 2 / d}\right) \\ \ldots \\ \sin \left(t / 10000^{2 * \frac{d}{2} / d}\right) \\ \cos \left(t / 10000^{2 * \frac{d}{2} / d}\right)\end{array}\right] \begin{aligned} & \text { dimensionality } \\ & \text { of positional } \\ & \text { encoding }\end{aligned}$

Positional encoding: learned

Another idea: just learn a positional encoding

+ more flexible (and perhaps more optimal) than sin/cos encoding
+ a bit more complex, need to pick a max sequence length (and can't generalize beyond it)

Masked attention for Target sentence

- For the conditioned prediction, we aim to predict the current target word based on its past words and the source input, i.e., $P\left(y_{i} \mid X, y_{<i}\right)$
- We can do so by "masking" the results for the output
kono eiga ga kirai [sos] I hate this movie [eos]

Masked attention for Target sentence

- At test time, the predicted token will be feed as input to the next time step
- We must design a masking to allow self-attention on the past tokens, but not on the future tokens.

Easy solution:

in practice:
just replace $\exp \left(e_{l, t}\right)$ with 0 if $l<t$
inside the softmax

Attention Tricks

- Self Attention: Each layer combines words with others
- Multi-headed Attention: 8 attention heads learned independently
- Normalized Dot-product Attention: Remove bias in dot product when using large networks
- Positional Encodings: Make sure that even if we don't have RNN, can still distinguish positions

Training Tricks

- Layer Normalization: Help ensure that layers remain in reasonable range
- Specialized Training Schedule: Adjust default learning rate of the Adam optimizer
- Label Smoothing: Insert some uncertainty in the training process
- Masking for Efficient Training

Code Walk:
 The Annotated Transformer

https://nlp.seas.harvard.edu/2018/04/03/attention.html

A Caveat: Attention Is Not All You Need?

- Transformers are very popular, for good reason, but
- They can be slow to decode at test time (Zhang et al. 2018)
- They don't necessarily outperform RNNs on the decoder side of seq2seq tasks (Chen et al. 2018)
- They can be hard to train on small data (Nguyen and Salazar 2019)
- Use them, but also be aware of limitations!

Better Modeling for Attention

Incorporating Markov Properties (Cohn et al. 2015)

- Intuition: attention from last time tends to be correlated with attention this time

- Add information about the last attention when making the next decision

Hard Attention

- Instead of a soft interpolation, make a zero-one decision about where to attend (Xu et al. 2015)
- Harder to train, requires methods such as reinforcement learning (see later classes)
- Perhaps this helps interpretability? (Lei et al. 2016)

```
Review
the beer was n't what i expected, and i'm not sure it's "true
to style", but i thought it was delicious. a very pleasant
ruby red-amber color with a relatively brilliant finish, but a
limited amount of carbonation, from the look of it. aroma is
what i think an amber ale should be - a nice blend of
caramel and happiness bound together.
Ratings
    Look: 5 stars
                                Smell: 4 stars
```


Monotonic Attention (e.g. Yu et al. 2016)

- In some cases, we might know the output will be the same order as the input
- Speech recognition, incremental translation, morphological inflection (?), summarization (?)
$\begin{array}{llllllllllllll}a & \mathrm{l} & \mathrm{n} & \mathrm{n} & \mathrm{u} & \mathrm{s} & \mathrm{m} & \mathrm{y} & \mathrm{y} & \mathrm{n} & \mathrm{t} & \mathrm{i} & </ \mathrm{s}>\end{array}$

- Basic idea: hard decisions about3whether to read more

Better Training for Attention

Coverage

- Problem: Neural models tends to drop or repeat content
- Solution: Model how many times words have been covered
- Impose a penalty if attention not approx. 1 over each word (Cohn et al. 2015)
- Add embeddings indicating coverage (Mi et al. 2016)

Bidirectional Training (Cohn et al. 2015)

- Method: Train so that we get a bonus based on the trace of the matrix product for training in both directions

$$
\operatorname{tr}\left(A_{X \rightarrow Y} A_{Y \rightarrow X}^{\top}\right)
$$

Attention is not Alignment! (Koehn and Knowles 2017)

- Attention is often blurred

			$\begin{aligned} & \text { 프N } \\ & \text { O} \end{aligned}$	品		.	若			
the	47							17		
relationship		81								
between			72							
Obama				87						
and					93					
Netanyahu						95				
has							38	16		26
been							21	14		54
stretched										77
for								38	33	12
years									90	
42	11							19	32	17

Supervised Training (Mi et al. 2016)

- Sometimes we can get "gold standard" alignments a-priori
- Manual alignments
- Pre-trained with strong alignment model
- Train the model to match these strong alignments

What Else Can We Attend To?

Copy Mechanisms

- Like the previous explanation
- But also, more directly through a copy mechanism (Gu et al. 2016)

Copying from History

- In language modeling, attend to the previous words (Merity et al. 2016)

- In translation, attend to either input or previous output (Vaswani et al. 2017)

Hierarchical Structures (Yang et al. 2016)

- Encode with attention over each sentence, then attention over each sentence in the document

Various Modalities

- Images (Xu et al. 2015)

- Speech (Chan et al. 2015)

Multiple Sources

- Attend to multiple sentences (Zoph et al. 2015)

Source 1: UNK Aspekte sind ebenfalls wichtig.
Target: UNK aspects are important, too

Source 2: Les aspects UNK sont également importants.

- Libovicky and Helcl (2017) compare multiple strategies
- Attend to a sentence and an image (Huang et al. 2016)

Questions?

