CS769 Advanced NLP Conditioned Generation

 Junjie HuSlides adapted from Graham, Sergey, Chris https://junjiehu.github.io/cs769-spring23/

Goals for Today

- Formulation of Conditional Language Modeling
- Decoding Algorithms
- Model Ensemble
- Tasks and Evaluation

Language Models

- Language models are generative models of text

$$
\underset{\downarrow}{x \sim P(X)}
$$

"The Malfoys!" said Hermione.
Harry was watching him. He looked like Madame Maxime. When she strode up the wrong staircase to visit himself.
"I'm afraid I've definitely been suspended from power, no chance-indeed?" said Snape. He put his head back behind them and read groups as they crossed a corner and fluttered down onto their ink lamp, and picked up his spoon. The doorbell rang. It was a lot cleaner down in London.

Conditioned Language Models

- Not just generate text, generate text according to some specification, i.e., $P(Y \mid X)$

Input X
Structured Data
\section*{English}
Document
Utterance
Image
Speech

Output Y (Text)
NL Description
Japanese
Short Description
Response
Text
Transcript Speech Recognition

Formulation and Modeling

Calculating the Probability of a Sentence

$$
P(X)=\prod_{i=1}^{I} \frac{P\left(x_{i} \mid\right.}{\prod_{1}} \frac{\left.x_{1}, \ldots, x_{i-1}\right)}{\text { Next Word Context }}
$$

Conditional Text Generation Models

$$
P(Y \mid X)=\prod_{j=0}^{J} P\left(y_{j} \left\lvert\, \frac{X}{T}\right., y_{0}, \cdots, y_{j-1}\right)
$$

Sometimes we add some special tokens to Y :

- y_{0} : start of sentence token, i.e., "[SOS]" or "<s>"
- y_{J} : end of sentence token, i.e., "[EOS]" or "</s>"

(One Type of) Language Model (Mikolov et al. 2011)

(One Type of) Conditional Language Model

 (Sutskever et al. 2014)
Encoder

Decoder

How to Pass Hidden State?

- Initialize decoder w/ encoder hidden state (Sutskever et al. 2014)

- Transform the encoder hidden state (can be different dimensions)

- Add encoder hidden state to each decoder time step (Kalchbrenner \& Blunsom 2013)

- Use attention to selectively pick related inputs to each step

Decoding Methods for Text Generation

The Generation Problem

- We have a model of $P(Y \mid X)$, how do we use it to generate a sentence?
- Three methods:
- Sampling: Try to generate a random sentence according to the probability distribution.
- Argmax: Try to generate the sentence by taking one word with the highest score at each time step.
- Beam search: Try to approximately generate the sentence with the "highest" overall score.

Sampling

- Generate words one-by-one by the conditioned probability at each time step

$$
\begin{aligned}
& \text { while } y_{j-1}!=\text { "[EOS]": } \\
& \quad y_{j} \sim P\left(y_{j} \mid X, y_{0}, \cdots, y_{j-1}\right)
\end{aligned}
$$

- Namely, sampling a sentence $\left[y_{0}, \cdots, y_{J}\right] \sim P(Y \mid X)$

Greedy Search

- One by one, pick the single highest-probability word

$$
\begin{aligned}
& \text { while } y_{j-1}!=\text { "[EOS]": } \\
& \quad y_{j}=\arg \max P\left(y_{j} \mid X, y_{0}, \cdots, y_{j-1}\right)
\end{aligned}
$$

Problems:

- Will often generate the "easy" words first
- Will prefer multiple common words to one rare word
- May return a poor sentence that has low probabilities of words at the end.

Example: Greedy Search

- Decode the most likely sequence

What if we choose words w/ lower probability?

Conditioned probability changes
w/ different predicted context

How many possible decodings are there?

- For a vocabulary of V words, there are V^{J} possible sequences of length J

Word 1: 0.4	Word 1: 0.1	W	Word 1: 0.1	Word 1: 0.0
Word 2: 0.2	Word 2: 0.5	Word 2: 0.1	Word 2: 0.8	Word 2: 0.1
Word 3: 0.3	Word 3: 0.2	Word 3: 0.1	Word 3: 0.0	Word 3: 0.0
<EOS>: 0.1	<EOS>: 0.2	<EOS>: 0.1	<EOS>: 0.1	<EOS>: 0.9

Decoding is a tree search problem:

We could use any tree search algorithm
But exact search in this case is very expensive
Fortunately, the structure of this problem makes some simple approximate search methods work very well.

Decoding with approximate search

- Basic intuition: while choosing the highest-probability word on the first step may not be optimal, choosing a very low-probability word is very unlikely to lead to a good result.
- Equivalently: we cannot be greedy at only one solution, but we can be somewhat greedy at multiple solutions.
- This is not true in general! This is a guess based on what we know about sequence decoding.
- Beam search intuition: store the \mathbf{k} best sequences so far, and update each of them.
- Special case of $\mathbf{k}=1$ is greedy decoding
- Often use \mathbf{k} around 5-10

Beam search example

In practice, we sum up the log probabilities (to avoid underflow of probability multiplication)

$$
P(Y \mid X)=\prod_{j=0}^{J} P\left(y_{j} \mid X, y_{0}, \cdots, y_{j-1}\right) \quad \log P(Y \mid X)=\sum_{j=0}^{J} \log P\left(y_{j} \mid X, y_{0}, \cdots, y_{j-1}\right)
$$

Example: $\mathbf{k}=2$ (track the 2 most likely hypotheses)
Fr-En Machine translation: il m'a frappé avec une tarte \rightarrow he hit me with a pie

Beam search summary

$\log P(Y \mid X)=\sum_{j=0}^{J} \log P\left(y_{j} \mid X, y_{0}, \cdots, y_{j-1}\right)$

At each time step j :
There are k hypotheses in a beam

1. For each incomplete hypothesis $\left(y_{0}, y_{1}, \cdots, y_{j-1}\right)$ that we are tracking, find the top k tokens $y_{j}^{(1)}, y_{j}^{(2)}, \cdots, y_{j}^{(k)}$ with the k highest log-probability scores

$$
\log P\left(y_{j} \mid X, y_{0}, \cdots, y_{j-1}\right)
$$

2. Sort the resulting k^{2} length- j sequences by their total log-probability
3. Keep the top k hypothesis (out of k^{2}) in the beam $\sum_{t=0}^{j} \log P\left(y_{t} \mid X, y_{0}, \cdots, y_{t-1}\right)$
4. Advance each hypothesis to time $j+1$

When do we stop decoding?

If one of the highest-scoring hypotheses ends in [EOS]

- Save it along with its score, but do not pick it to expand further
- Keep expanding the k remaining best hypotheses

Continue until either some cutoff length \boldsymbol{J} or until we have k hypotheses that end in [EOS]

Which sequence do we pick?

- At the end of beam search, we might have 3 hypotheses

1. [SOS] He hit me with a pie [EOS]
2. [SOS] He threw a pie [EOS]
3. [SOS] I was hit with a pie that he threw [EOS]
$\log P(Y \mid X)=\sum_{j=0}^{J} \log P\left(y_{j} \mid X, y_{0}, \cdots, y_{j-1}\right)$
$\log P(Y \mid X)=-4.5$
$\log P(Y \mid X)=-3.2$
$\log P(Y \mid X)=-7.2$

Problem: $P<1$ always, hence $\log P<0$ always
The longer the sequence the lower its total score (more negative numbers added together)

Simple "fix": normalize total score by sequence length

$$
\operatorname{score}(Y \mid X)=\frac{1}{J} \sum_{j=0}^{J} \log P\left(y_{j} \mid X, y_{0}, \cdots, y_{j-1}\right)
$$

Is this the best?

Beam search summary

score $(Y \mid X)=\frac{1}{J} \sum_{j=0}^{J} \log P\left(y_{j} \mid X, y_{0}, \cdots, y_{j-1}\right)$
At each time step j :

1. For each incomplete hypothesis $\left(y_{0}, y_{1}, \cdots, y_{j-1}\right)$ that we are tracking, find the top k tokens $y_{j}^{(1)}, y_{j}^{(2)}, \cdots, y_{j}^{(k)}$ with the k highest log-probability scores
2. Sort the resulting k^{2} length- j sequences by their total log-probability
3. Keep the top k hypothesis (out of k^{2}) in the beam
4. Advance each hypothesis to time $j+1$

Return saved sequence with highest score $(Y \mid X)$

Model Ensemble

Ensemble

- Combine predictions from multiple models

- Why?
- Multiple models make somewhat uncorrelated errors
- Models tend to be more uncertain when they are about to make errors
- Smooths over idiosyncrasies of the model

Linear Interpolation

- Take a weighted average of the M model probabilities

$$
\begin{aligned}
& P\left(y_{j} \mid X, y_{1}, \ldots, y_{j-1}\right)= \\
& \sum_{m=1}^{M} \frac{P_{m}\left(y_{j} \mid X, y_{1}, \ldots, y_{j-1}\right)}{\begin{array}{c}
\text { Probability according } \\
\text { to model } m
\end{array}}
\end{aligned}
$$

$$
\sum_{m=1}^{M} \frac{P_{m}\left(y_{j} \mid X, y_{1}, \ldots, y_{j-1}\right)}{\} \frac{P\left(m \mid X, y_{1}, \ldots, y_{j-1}\right)}{\}
$$

Probability of model m

- Second term often set to uniform distribution $1 / \mathrm{M}$

Log-linear Interpolation

- Weighted combination of log probabilities, normalize
$P\left(y_{j} \mid X, y_{1}, \ldots, y_{j-1}\right)=$
$\frac{\operatorname{softmax}}{}\left(\sum_{m=1}^{M} \frac{\lambda_{m}\left(X, y_{1}, \ldots, y_{j-1}\right)}{\left.\log P_{m}\left(y_{j} \mid X, y_{1}, \ldots, y_{j-1}\right)\right)}\right.$
Normalize Interpolation coefficient Log probability for model m of model m
- Interpolation coefficient often set to uniform distribution $1 / \mathrm{M}$

Linear or Log Linear?

- Think of it in logic!
- Linear: "Logical OR" - linear addition operator
- the interpolated model likes any choice that one model gives a high probability
- use models with models that capture different traits
- necessary when any model can assign zero probability
- Log Linear: "Logical AND" - log-linear addition \rightarrow production
- interpolated model only likes choices where all models agree
- use when you want to restrict possible answers

Parameter Averaging (e.g. Bahar et al. 2017)

- Problem: Ensembling means we have to use M models at test time, increasing our time/memory complexity
- Parameter averaging is a cheap way to get some good effects of ensembling
- Basically, write out model checkpoints at several time steps, and take the average of checkpoint parameters at the end of training.

Ensemble Distillation (e.g. Kim et al. 2016)

- Problem: parameter averaging only works for models within the same run
- Knowledge distillation trains a much smaller student model to copy the ensemble model (teacher model)
- Specifically, it tries to match the conditional probability over predicted words between the student and teacher models.
- Why? We want the student model to make the same mistakes as an ensemble teacher model.
- Shown to increase accuracy notably

Case Studies in Conditional Language Modeling

Translation

- Most widely used example of generation?
- e.g. Translation from WMT shared tasks (http:// statmt.org/wmt21/)
- News translation
- Similar language translation
- Biomedical translation
- Low-resource multilingual translation
- Translation efficiency
- Terminology-aware translation
- Lifelong learning

Summarization

- Take a longer text, and output a shorter text
- Can use extractive models that copy input, or abstractive models that generate from scratch
- Multiple granularities:
- Sentence compression (sentence -> shorter sentence)
- Single document summarization (document -> shorter text)
- Multi-document summarization (multiple documents -> text)

Dialog Response Generation

- Given an input utterance, generate a response
- e.g. Meena Chatbot (Adiwardana et al. 2020)

Human: Hi!

Meena: Hi there! How's it going?
Human: Pretty well.
Meena: I'm glad to hear it. :D
Human: What is your favorite book?
Meena: Oh, that's a toughie. Right now I'd have to say it's A Dance With Dragons, but Harry Potter is a close second.
Human: Oh I love Harry Potter
Meena: Me too! I've read the series at least five times over.
Human: Haha, same probably. Which one do you like the most
Meena: Probably Chamber of Secrets.
Human: Ah. I like Prisoner of azkaban best
Meena: Yeah, that's a good one too.
Human: Do you like the movies more or the books
Meena: I like the movies more. The books are good, don't get me wrong, but I like the pacing better in the movies.
Human: That is an unpopular opinion
Meena: I know. I'm the only one I know who prefers the movies.

Image Captioning (e.g. Karpathy et al. 2015)

- Input is image features, output is text
training image

"A Tabby cat is leaning
on a wooden table, with
one paw on a laser
mouse and the other on a black laptop"

- Use standard image encoders (e.g. CNN)
- Often pre-trained on large databases such as ImageNet

From Structured Data (e.g. Wen et al 2015)

- When you say "Natural Language Generation" to an old-school NLPer, it means this

	SF Restaurant	SF Hotel
\%	inform, inform_only, reject, confirm, select, request, reqmore, goodbye	
\%	name, type, *pricerange, price, phone, address, postcode, *area, *near	
免	*food *goodformeal *kids-allowed	*hasinternet *acceptscards *dogs-allowed

bold=binary slots, *=slots can take "don't care" value

Still a Difficult Problem!

- e.g. "Challenges in data-to-document generation" (Wiseman et al. 2017)

The Utah Jazz (38-26) defeated the Houston Rockets (38 - 26) 117-91 on Wednesday at Energy Solutions Arena in Salt Lake City. The Jazz got out to a quick start in this one , out - scoring the Rockets $31-15$ in the first quarter alone . Along with the quick start, the Rockets were the superior shooters in this game, going 54 percent from the field and 43 percent from the three - point line, while the Jazz went 38 percent from the floor and a meager 19 percent from deep . The Rockets were able to out - rebound the Rockets 49 49 , giving them just enough of an advantage to secure the victory in front of their home crowd. The Jazz were led by the duo of Derrick Favors and James Harden . Favors went 2 - for -6 from the field and $0-$ for -1 from the three - point line to score a game - high of 15 points, while also adding four rebounds and four assists

Figure 2: Example document generated by the Conditional Copy system with a beam of size 5 . Text that accurately reflects a record in the associated box- or line-score is highlighted in blue, and erroneous text is highlighted in red.

- Focused evaluation using, e.g. information extraction

Level of Constraint on Output

- Given the conditioning, the outputs can be more or less constrained, very rough approximation below

Similar Distant
 $\begin{array}{cccc}\text { Language } & \text { Language } & \text { Image } & \text { Data-to- } \\ \text { Captioning } & \text { Dext } & \text { Dialog } \\ \text { Translation } & \text { Translation } & \text { Casponse }\end{array}$
 More constrained
 Less constrained

- More freedom = more flexibility, but often more difficulty in modeling and evaluation

Controlled Generation

- Add a further constraint in addition to content-based ones
- Politeness/Style Control: Take an input X and a label indicating style, etc. (e.g. Sennrich et al. 2016)

source reference	Give me the telephone! Gib mir das Telefon! [T]
none	Gib mir das Telefon! [T]
polite	Geben Sie mir das Telefon! [V]
informal	Gib mir das Telefon! [T]

- Personalization: Take an input X and a side information about the speaker (e.g. Hoang et al. 2016)
- Sentiment: Control the sentiment of the generated sentence (e.g. Hu et al. 2018)
- etc. etc.

How do we Evaluate?

Basic Evaluation Paradigm

- Use parallel test set
- Use system to generate translations
- Compare target translations w/ reference

Human Evaluation

－Ask a human to do evaluation
太郎が花子を訪れた

Taro visited Hanako the Taro visited the Hanako Hanako visited Taro

Adequate？	Yes
Fluent？	Yes
Better？	1

Yes
No
2
No
Yes
3
－Final goal，but slow，expensive，and sometimes inconsistent

Human Evaluation Shared Tasks

- Machine Translation
- Conference on Machine Translation (WMT) shared tasks http://www.statmt.org/wmt20/
- Composite Leaderboard
- GENIE leadeboard for QA, summarization, MT https://genie.apps.allenai.org/

BLEU

- Works by comparing n-gram overlap w/ reference

Reference: Taro visited Hanako
System: the Taro visited the Hanako

Brevity: $\min (1, \mid$ System|/|Reference| $)=\min (1,5 / 3)$

1-gram: 3/5
2-gram: 1/4 brevity penalty $=1.0$

BLEU-2 $=(3 / 5 * 1 / 4)^{1 / 2 ~ * ~} 1.0$ $=0.387$

- Pros: Easy to use, good for measuring system improvement
- Cons: Often doesn't match human eval, bad for comparing very different systems

Embedding-based Metrics

- Recently, many metrics based on neural models
- BertScore: Find similarity between BERT embeddings (unsupervised) (Zhang et al. 2020)
- BLEURT: Train BERT to predict human evaluation scores (Sellam et al. 2020)
- COMET: Train model to predict human eval, also using source sentence (Rei et al. 2020)
- PRISM: Model based on training paraphrasing model (Thompson and Post 2020)
- BARTScore: Calculate the probability of source, reference, or system output (Yuan et al. 2021)

Perplexity

- Calculate the perplexity of the words in the held-out set without doing generation
- Pros: Naturally solves multiple-reference problem!
- Cons: Doesn't consider decoding or actually generating output.
- May be reasonable for problems with lots of ambiguity.

Which One to Use?

- Meta-evaluation runs human evaluation and automatic evaluation on the same outputs, calculates correlation
- Examples:
- WMT Metrics Task for MT (Mathur et al. 2021)
- RealSumm for summarization (Bhandari et al. 2020)
- Evaluation is hard, especially with good systems! Most metrics had no correlation w/ human eval over best systems at some WMT 2019 tasks

Questions?

