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Goals for Today
• Lexical Semantics and Distributional Semantics 
• Count Based Word Methods (e.g, TF-IDF, PMI) 
• Matrix Factorization (e.g., topic modeling) 
• Word Embeddings (e.g., Skip-gram, CBOW) 
• Evaluation (intrinsic and extrinsic)
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How should we represent the 
meaning of the word?
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Lexical Semantics
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• How should we represent the meaning of the word? 
• Words, lemmas, senses, definition

Oxford English Dictionary: https://www.oed.com/

https://www.oed.com/


Lemma pepper
• Sense 1: spice from pepper plant 
• Sense 2: the pepper plant itself 
• Sense 3: another similar plant (Jamaican pepper) 
• Sense 4: plant with peppercorns (California pepper) 
• Sense 5: capsicum (i.e., chili, paprika, bell pepper, 

etc)
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Lexical Semantics

6

• How should we represent the meaning of the word? 
• Words, lemmas, senses, definition 

• Relationships between words or senses 
1. Synonymity: same meaning, e.g., couch/sofa 
2. Antonymy: opposite senses, e.g., hot/cold 
3. Similarity: similar meanings, e.g., car/bicycle 
4. Relatedness: association, e.g., car/gasoline 
5. Superordinate/Subordinate: e.g., car/vehicle, mango/

fruit



Lexical Semantics
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• How should we represent the meaning of the word? 
• Words, lemmas, senses, definition 

• Relationships between words or senses 

• Taxonomy: abstract -> concrete



Taxonomy
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• abstract -> concrete



Lexical Semantics
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• How should we represent the meaning of the word? 
• Words, lemmas, senses, definition 

• Relationships between words or senses 

• Taxonomy: abstract -> concrete 

• Semantic frames and roles



Semantic Frame
• A set of words that denote perspectives or 

participants in an event 
• Tom brought a book from Bill. 

• Bill sold a book to Tom.
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event from the perspective of the buyer

event from the perspective of the seller

buyer

seller



Mismatch
• Theories of language tend to view the data (words, 

sentences, documents) and abstractions over it as 
symbolic or categorical. 
• Uses symbols to represent linguistic information 

• Machine learning algorithms built on optimization 
rely more on continuous data. 
• Uses floating-point numbers (vectors)
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Documents and Words as Vectors
• A common thread: we derive the vectors from a 

corpus (collection of documents), with no annotation 
• a.k.a. “unsupervised” or “self-supervised” learning 

• Similar to language modeling 

• Human-written raw sentences have already provide 
supervision on how words co-exist in a sentence.
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Problems with Discrete Representations
• Too coarse: expert skillful  

• Sparse 
• Subjective 
• Expensive 
• Hard to compute word relationships

↔
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Distributional Hypothesis

“The meaning of a word is its use in the language”       

                                                       [Wittgenstein 1943] 

“You shall know a word by the company it keeps” 

                                                                     [Firth 1957] 

“If A and B have almost identical environments we say that 
they are synonyms.” 

                                                                     [Harris 1954]
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Example
• What does “Ong Choy” mean? 

• Suppose you see these sentences: 
• Ong Choy is delicious sautéed with garlic 
• Ong Choy is superb over rice
• Ong Choy leaves with salty sauces 

• And you’ve also seen these: 
• … water spinach sautéed with garlic over rice 
• Chard stems and leaves are delicious 
• Collard greens and other salty leafy greens
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Ong Choy  “Water Spinach”?≈
• Ong Choy is a leafy green like spinach, chard, or 

collard greens
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Ong Choy: pronunciation of “蕹菜” in Cantonese  



Model of Meaning Focusing on Similarity
• Each word = a vector 

• Similar words are “nearby in space” 

• the standard way to represent meaning in NLP
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Approaches for encoding words as vectors
• Counting-based methods (e.g., TF-IDF) 
• Matrix factorization (e.g., topic modeling) 
• Brown clusters 
• Word2vec (e.g., Skip-gram, CBOW)
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Count-based Model 
— A naive way to represent words in a corpus is to count their statistics.
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Count-based Method
• Words are not independent, identically distributed (IID)! 

• Predictable given history: n-gram/Markov models 

• Predictable given other words in the document: topic models 

• Let  be a set of “topic”/“themes” that will 
capture the interdependence of words in a document 

• Usually these are not named or characterized in 
advance; they’re just  different values with no a prior 
meaning. 
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Notation
•  is the corpus 
•  is the c-th document in the corpus 

•  is the length of  (in tokens) 

•  is the total count of tokens in the corpus,

 

•  are the vocabulary size and document size 
respectively.
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Word-Document Matrix
• Let  contain the statistics of association 

between words in the vocabulary and documents. 
• Example: three documents
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For example,  could be 
defined as a count matrix: 
count of word  in the -th 
document

Note:  could be other 
statistics like TF-IDF, PMI, 
more. 



Encoding context with TF-IDF
• Problem for word-doc matrix: useless signal from the, they, and 
• Solution: TF-IDF incorporates two terms that capture these 

conflicting constraints: 
• Term frequency (tf): frequency of the word in the document 

• Document frequency (df): number of documents that a term 
occurs in. Inverse document frequency (idf) just takes the 
inverse: 

where N is the no. of documents.
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idfv = log
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Higher for words 
that occur in 

fewer documents



TF-IDF Example
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Example: 4 documents in red



Association Score
• Let  be the percentage of word  in all docs, and 

 be the word count in a doc . 

• By chance (under a unigram model), we expect that 
 (percentage) of words in document  of length 

 are the word  

• As document  may consist of different topics, is the 
occurrence of word  in  surprisingly high (or low), 
comparing to chance? 

• Intuition: consider the ratio of observed frequency 
( ) to “chance” 
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Pointwise Mutual Information
• A common measurement is to define  as positive 

pointwise mutual information: 

where .

26: count matrix : PMI



A Nod to Information Theory
• Single event: pointwise mutual information for two random 

variables (r.v.)  and  taking values  and :  

• All possible events: average mutual information

• PMI, MI: amount of information each r.v. offers about the other. 

• Recall entropy: amount of information or uncertainty in a single r.v. 
27



Pointwise Mutual Information
• If a word  appears with nearly the same frequency in every doc, its 

row  is nearly 0. 

• If a word  appears only in doc , their PMI  is large and 
positive 

• PMI is very sensitive to rare occurrences: smooth the frequencies and 
filter rare words. 

• PMI: tells us where a unigram model is most wrong.

28: count matrix : PMI



Reflection
• Can we use the rows of this association matrix  as word 

vectors in a neural net model? 
• Word embedding’s dimension is linear to no. of document, since 

. Too large & not generalizable to other documents. 

• Too many zeros for each word vector (sparse) 

• Can we use the columns of this association matrix  as 
document vectors in a neural net model? 

• Yes. If we use a count function for , then this is essentially the bag-
of-word representation for each document. 

• Too many zeros for each document vector (sparse)
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Matrix Factorization 
Based Method
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Topic Models: Latent Semantic Indexing/Analysis  

• LSA or LSI seeks to solve:
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Deerwester et al., 1990, LSA 

• This can be solved by singular value decomposition 
to , then truncating to d dimensions. 
•  contains left singular vectors of  
•  contains right singular vectors of  
•  are singular values of : nonnegative and conventionally 

organized in decreasing order.

where  is the word embedding matrix,  is the document 
embedding matrix.



Truncated Singular Value Decomposition
• Some element of  are nearly 0: delete these values 

to obtain a “low-rank” approximation of 
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: count matrix

LSI/A Example
• d=2, project vectors of words and documents to 

two dimensional space.
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c = 2
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Note: “no”, “we” and “,” are all in the exact same spot. Why? 
• These words have the same statistics in this example, but this 

doesn’t imply that they have the same semantic meaning.



Refection
• LSA creates a mapping of words and documents into 

the same low-dimensional space. Remove the reliance 
on no. of documents for word embeddings. 

•  is sparse and noisy. LSA “squeezes” the zeros, finds 
the relationship between words and documents through 
topics (features), and finds the best rank-d approximation 
to .  

• More variants of LSA 
• Probabilistic Latent Semantic Indexing (PLSI) 

• Latent Dirichlet Allocation (LDA) 

• Nonnegative Matrix Factorization (NMF)

34



Distributed Word 
Embeddings
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Word Vector Models
• These models are designed to “guess” a word at 

position  given a word at a position in 
  

• “Pre-train” word vectors are used in other larger 
models (e.g., neural LM)
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Word2vec
• Continuous bag of words (CBOW):  

• Similar to feedforward neural LM w/o the feedforward 
layers in Lecture 3.  

• Skip-gram:   
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Skip-gram Prediction
• Predict vs Count
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context size = 2



Skip-gram Prediction
• Predict vs Count
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context size = 2



Skip-gram Prediction
• Predict vs Count
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context size = 2



Skip-gram Prediction
• Predict vs Count
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context size = 2



Skip-gram Prediction
• Predict vs Count
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context size = 2



Skip-gram Prediction
• Predict vs Count
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context size = 2



Skip-gram Prediction
• The same word can appear 

in different context.
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context size = 2



Skip-gram Prediction
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Wthe = LookUp(Win, “the”)) 2 Rd,Win 2 R|V |⇥d

<latexit sha1_base64="DqMubcfTFFlqT1XBTPFDUkrsIy4="></latexit>

P (Wc|Wthe) = softmax(S)
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• For each word in the corpus
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Skip-gram Objective



• For each word in the corpus
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Skip-gram Objective

p(wt+j |wt) = p(o|c) = exp(u>
o vc)PV

i=1 exp(u
>
i vc)

<latexit sha1_base64="xL+VMt/xhUgl8lilF2OKLEIudtI="></latexit>

dot product 
(similarity) 
between outside 
and center word 
vectors 

Notation simplification: 
o = index of outside (context) word 
c = index of center word (wt) 
V = vocab size, V can be large 50K - 30M



Skip-gram w/ negative sampling
• V=50K-30M, too large! 

• Negative sampling:  
• Treat the center word and a neighboring context 

word as positive examples. 

• Randomly sample other words in the lexicon to get 
negative samples.
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p(wt+j |wt) = p(o|c) = exp(u>
o vc)PV

i=1 exp(u
>
i vc)
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• Convert the task to binary classification rather than 
multiclass: 

• New objective (single context word, k negative 
samples):
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Skip-gram w/ negative sampling



Choosing negative samples
• Pick negative samples according to unigram frequency 

P(w) 

• More common to choose according to: 

•  works well empirically 

• Gives rare words slightly higher probability 
• e.g., P(a) = 0.99, P(b) = 0.01

α = 0.75
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Available dense embeddings 
• Word2vec (Mikolov et a. 2013) 

• https://code.google.com/archive/p/word2vec/  

• GloVe (Pennington et al. 2014) 
• http://nlp.stanford.edu/projects/glove/  

• Fasttext (Bojanowsi et al. 2017) 
• http://www.fasttext.cc/ 
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Evaluation 
— how well do word vectors capture embedding similarity?
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Evaluating word vectors
• Intrinsic evaluation: test whether the representations 

align with our intuitions about word meaning. 
• How well does cosine similarity of word embeddings 

correlate with human judgements? 

• Completing analogies: a:b <-> c: ? 

• Extrinsic evaluation: test whether the representations 
are useful for downtream tasks, such as tagging, 
parsing, QA, … 
• Provide embeddings as input to the same classifier, how 

well does a model w/ pre-trained embeddings perform?
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A:B <-> C:?
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A:B <-> C:?



Other topics
• Bias in word embeddings (gender bias) 

• Multilingual word embeddings 
• Pre-trained contextualized word embeddings (e.g., 

Elmo, BERT, Roberta)
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Any Questions?
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