CS769 Advanced NLP

Multimodal Machine Learning: Vision-Language

Junjie Hu

Slides adapted from LP Morency https://junjiehu.github.io/cs769-spring22/

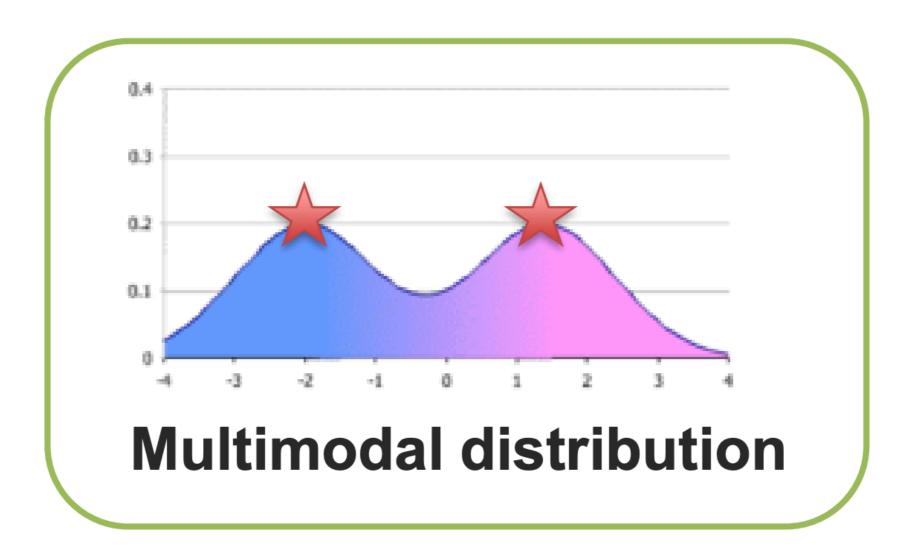
Goal for Today

- What is Multimodal?
 - Historical view, multimodal vs multimedia
- Core technical challenges
 - Representation learning, translation, alignment, fusion, and co-learning
- Recent pre-trained V+L models
 - CLIP
 - DALL-E

Multimodal Machine Learning

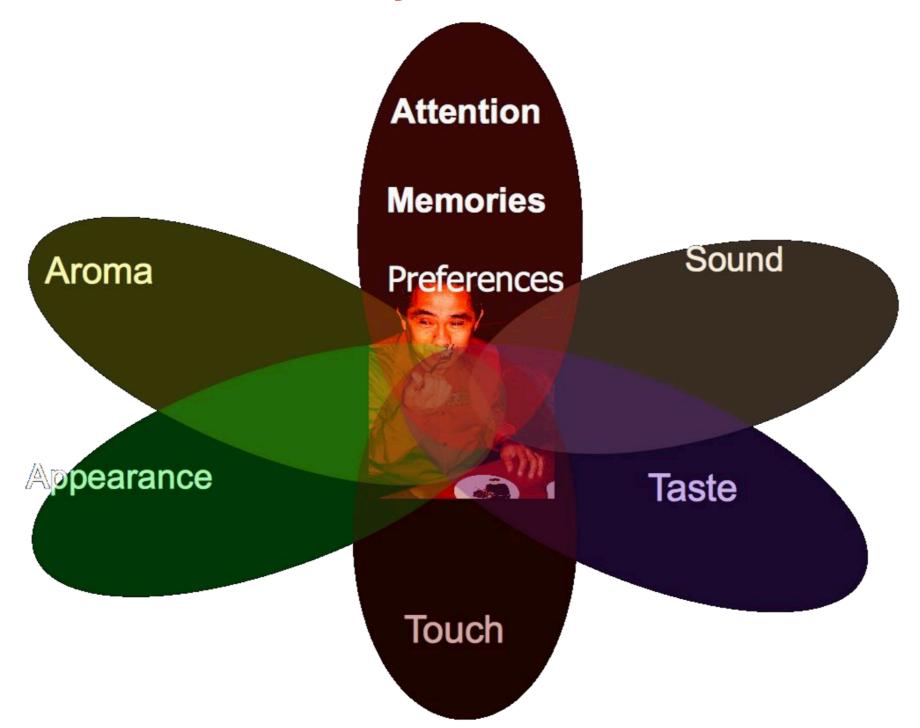
What is Multimodal?

 Multiple modes, i.e., distinct "peaks" (local maxima) in the probability density function



What is Multimodal?

Sensory Modalities



Multimodal Communicative Behaviors

Verbal

Lexicon

Words

Syntax

Part - of - speech Dependencies

Pragmatics

Discourse acts

Vocal

Prosody

Intonation Voice quality

Vocal expressions

Laughter, moans

Visual

Gestures

Head gestures
Eye gestures

Arm gestures

Body language

Body posture Proxemics

Eye contact

Head gaze Eye gaze

Facial expressions

FACS action units Smile, frowning

What is Multimodal?

- Modality: The way in which something happens or is experienced.
 - Modality refers to a certain type of information and/or the representation format in which information is stored.
 - Sensory modality: one of the primary forms of sensation, as vision or touch; channel of communication.
- Medium ("middle"): A means or instrumentality for storing or communicating information; system of communication/transmission.
 - Medium is the means whereby this information is delivered to the senses of the interpreter.

Examples of Modalities

- Natural language (both spoken or written)
- Visual (from images or videos)
- Auditory (including voice, sounds, and music)
- Haptics / touch
- Smell, taste and self-motion
- Physiological signals
 - Electrocardiogram (ECG), skin conductance
- Other modalities
 - Infrared images, depth images, fMRI

Prior Research on "Multimodal"

- Four eras of multimodal research
 - The "behavioral" era (1970s until late 1980s)
 - The "computational" era (late 1980s until 2000)
 - The "interaction" era (2000 2010)
 - The "deep learning" era (2010s until ...)

The McGurk Effect (1976)

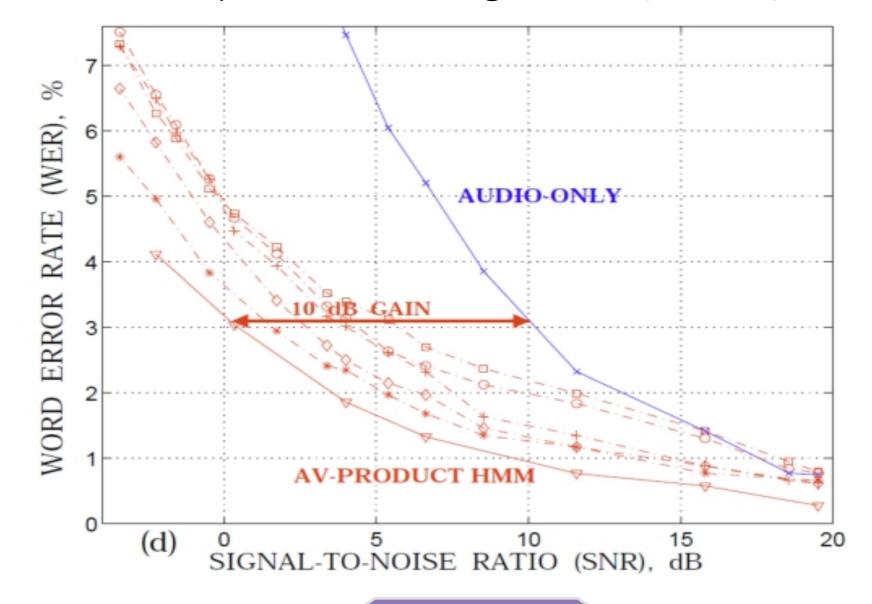
McGurk & MacDonald, 1976. Hearing lips and seeing voices, Nature

1970 1980 1990 2000 2010

10

The "Computational" Era (Late 1980s until 2000)

Audio-Visual Speech Recognition (AVSR)



Core Technical Challenges

Core Challenges in "Deep" Multimodal ML (Baltrusaitis et al. 2017)

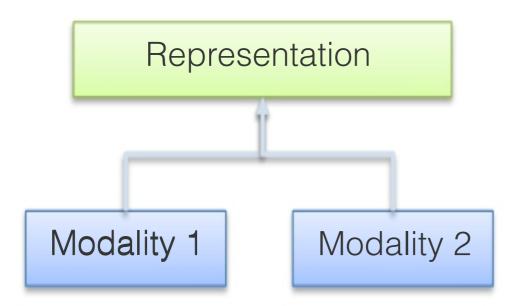
- Representation
- Alignment
- Fusion
- Translation
- Co-Learning

These challenges are non-exclusive.

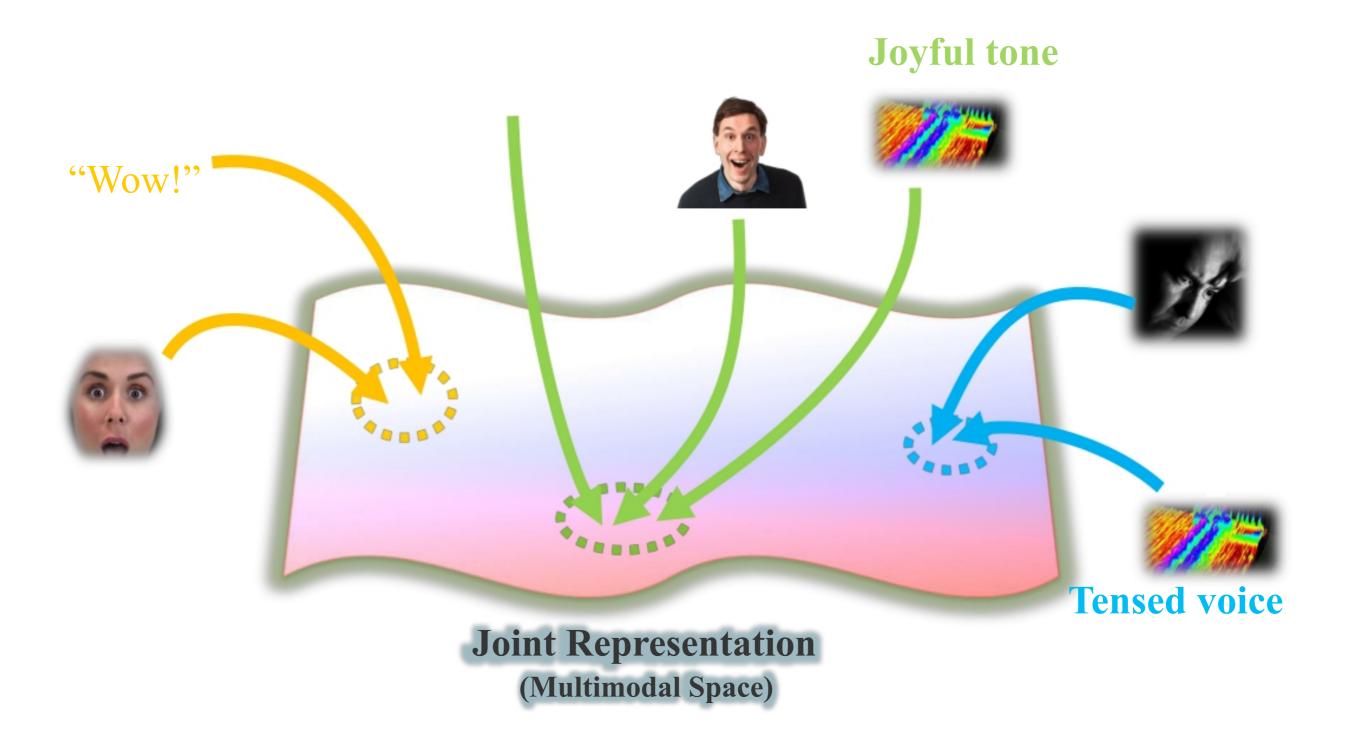
Core Challenge 1: Representation

 Definition: Learning how to represent and summarize multimodal data in a way that exploits the complementarity and redundancy.

A Joint representations:

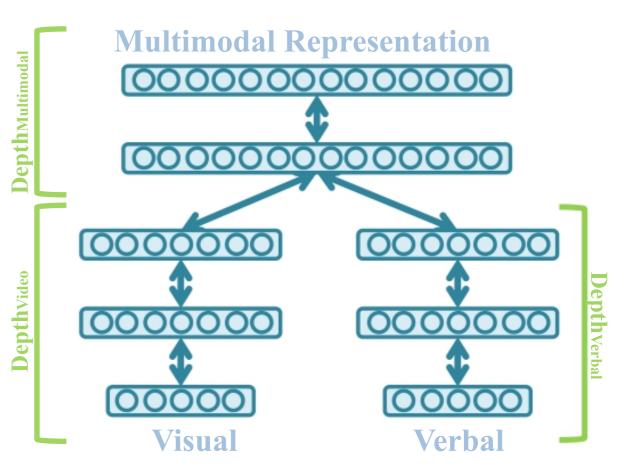


Joint Multimodal Representations



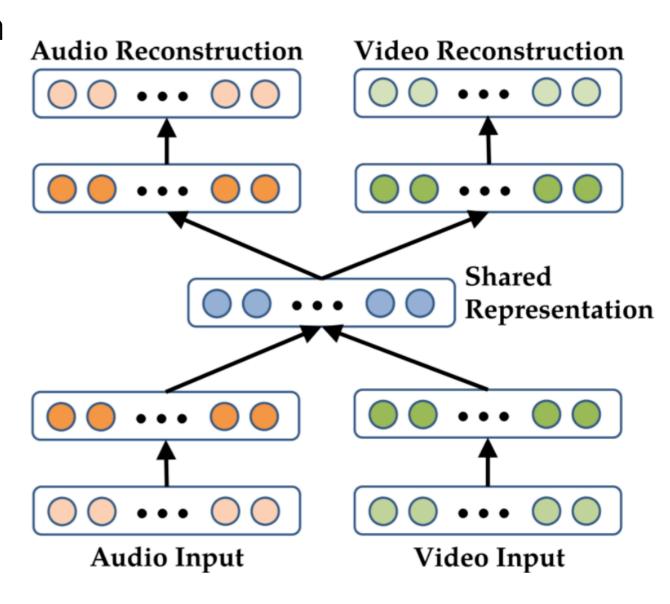
Joint Multimodal Representations

- Audio-visual speech recognition (Ngiam et al. 2011)
 - Bimodal Deep Belief Network
- Image captioning (Srivastava, Salahutdinov, 2012)
 - Multimodal Deep Boltzmann Machine
- Audio-visual emotion recognition (Kim et al. 2013)
 - Deep Boltzmann Machine



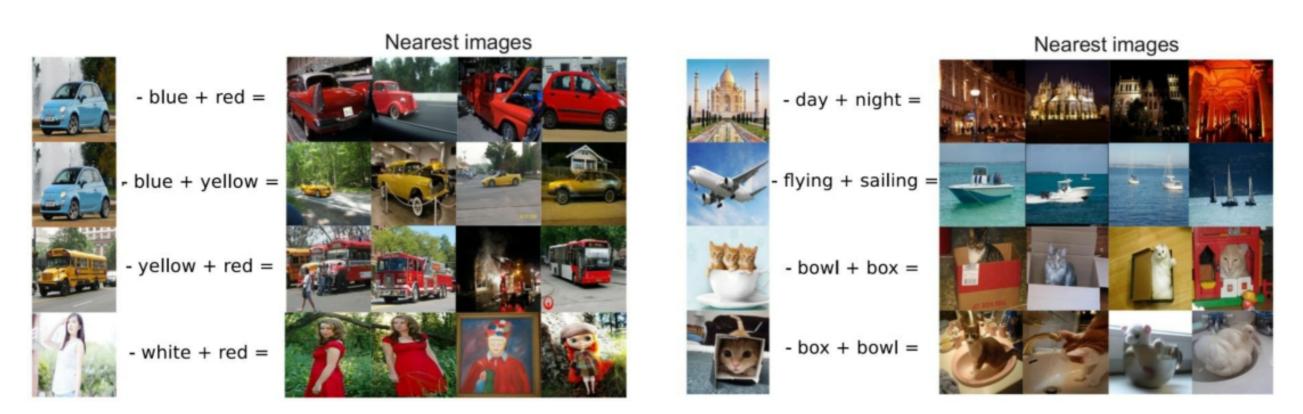
Deep Multimodal Autoencoder

- Bimodal auto-encoder
 - Used for audio-visual speech recognition
- Individual modalities can be pretrained
 - RBMs
 - Denoising Autoencoders
- Train the model to reconstruct the other modality
 - Use both
 - Remove audio
 - Remove video



Multimodal Vector Space Arithmetic

- Obtain a vector by the image embedding of a blue car - word embedding of "blue" + word embedding of "red"
- Retrieve the nearest images



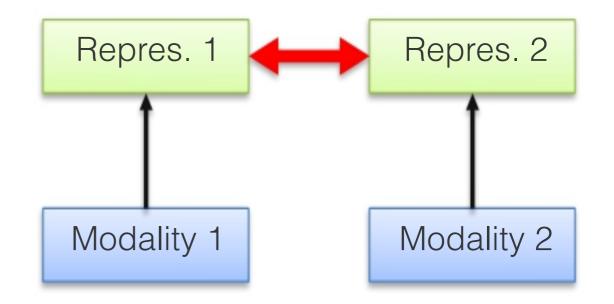
Core Challenge 1: Representation

 Definition: Learning how to represent and summarize multimodal data in a way that exploits the complementarity and redundancy.

A Joint representations:

Representation Modality 1 Modality 2

B Coordinated representations:

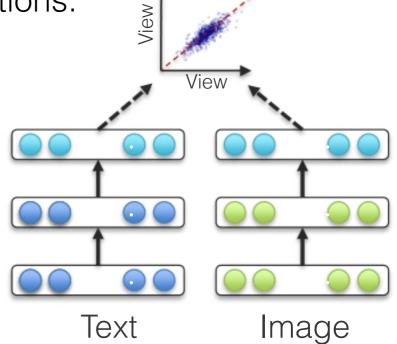


Coordinated Representation: Deep CCA

 Learn linear projections that are maximally correlated:

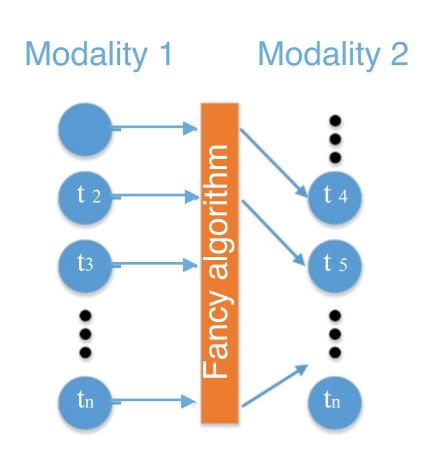
$$(\theta_1^*, \theta_2^*) = \underset{(\theta_1, \theta_2)}{\operatorname{argmax}} \operatorname{corr}(f_1(X_1; \theta_1), f_2(X_2; \theta_2)).$$

where f_1 and f_2 are two encoders (e.g., for texts, images), corr computes the correlation between two representations.



Core Challenge 2: Alignment

 Definition: Identify the direct relations between (sub)elements from two or more different modalities



A Explicit Alignment

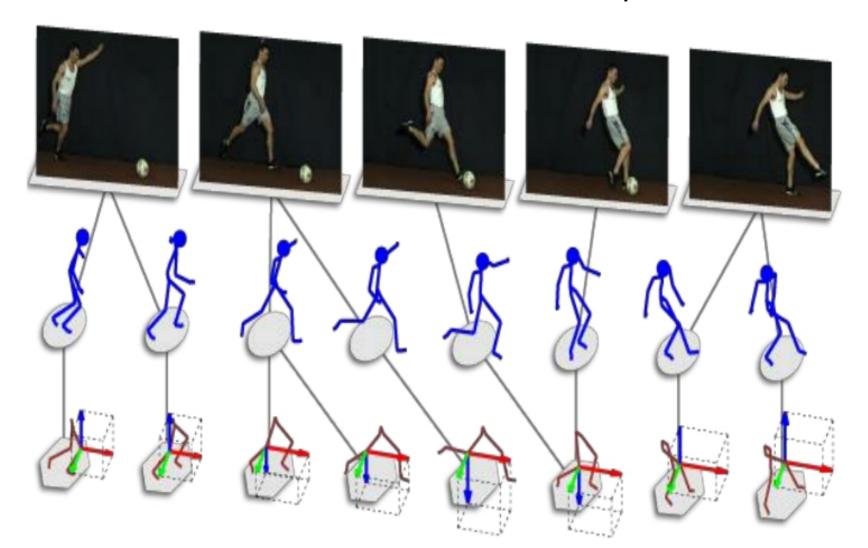
The goal is to directly find correspondences between elements of different modalities

B Implicit Alignment

Uses internally latent alignment of modalities in order to better solve a different problem

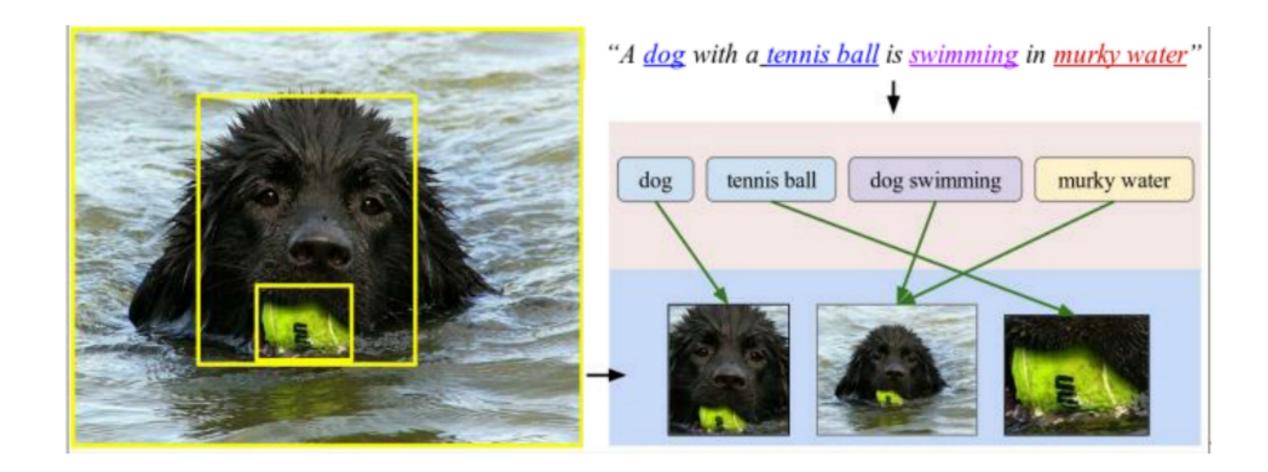
Example: Temporal Sequence Alignment

- Application:
 - Re-aligning asynchronous data
 - Finding similar data across modalities
 - Event reconstruction from multiple sources



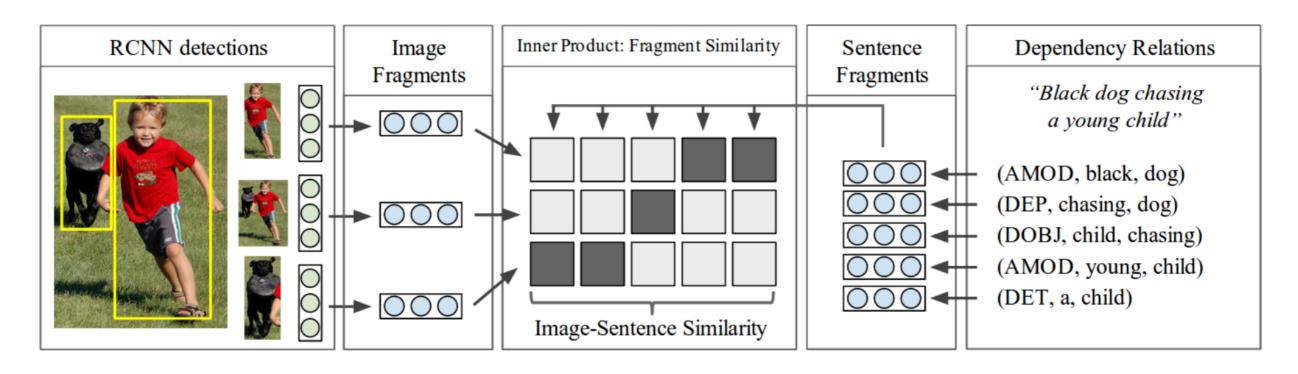
Implicit Alignment

Vision-language alignment, a.k.a. visual grounding.



Implicit Alignment

- Use object detection (RCNN) tools to extract bounding boxes, and encode each bounding box
- Use dependency parsing to extract dependency relations (Relation-head-tail triple), and encode each relation
- Compute the similarity and optimize the alignment objectives.

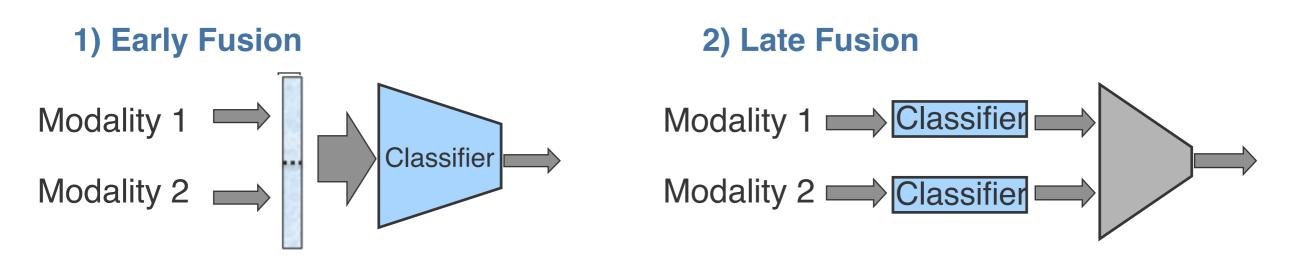


Karpathy et al. 2014 Deep Fragment Embeddings for Bidirectional Image Sentence Mapping

Core Challenge 3: Fusion

 Definition: To join information from two or more modalities to perform a prediction task.

A Model-Agnostic Approaches

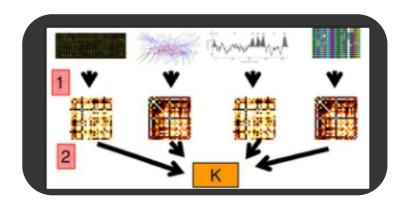


Core Challenge 3: Fusion

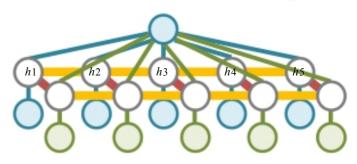
 Definition: To join information from two or more modalities to perform a prediction task.

A Model-Based (Intermediate) Approaches

- 1)Deep neural networks
- 2) Kernel-based methods
- 3) Graphical models



Multiple kernel learning



Multi-View Hidden CRF

Core Challenge 4: Translation

 Definition: Process of changing data from one modality to another, where the translation relationship can often be open-ended or subjective

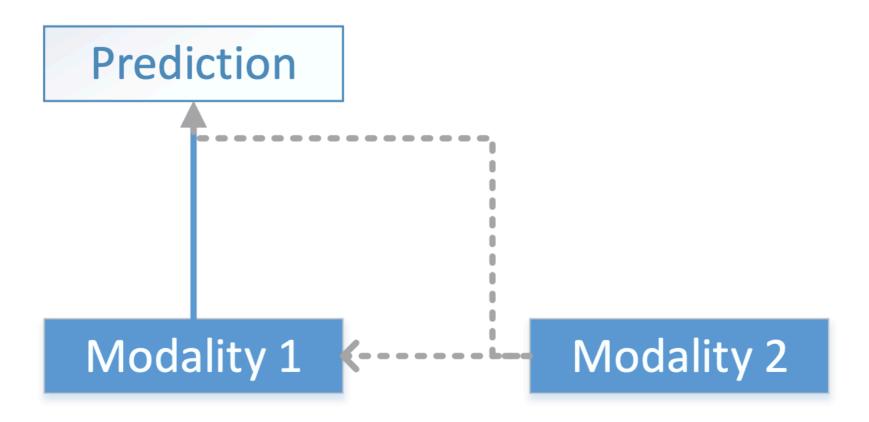
A Example-based Dictionary of translations Translation Translation

Text+Audio to Vision Translation

Marsella et al., Virtual character performance from speech, SIGGRAPH/ Eurographics Symposium on Computer Animation, 2013

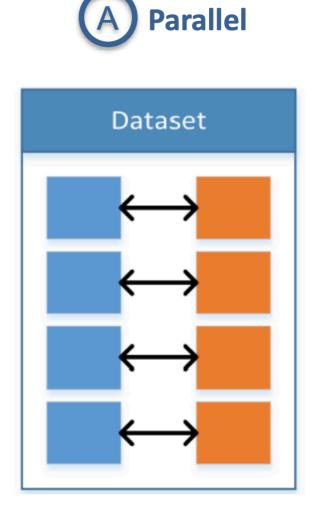
Core Challenge 5: Co-Learning

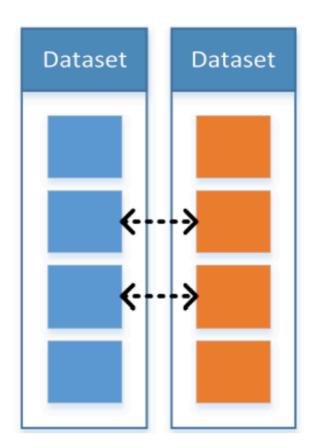
• **Definition**: Transfer knowledge between modalities, including their representations and predictive models.

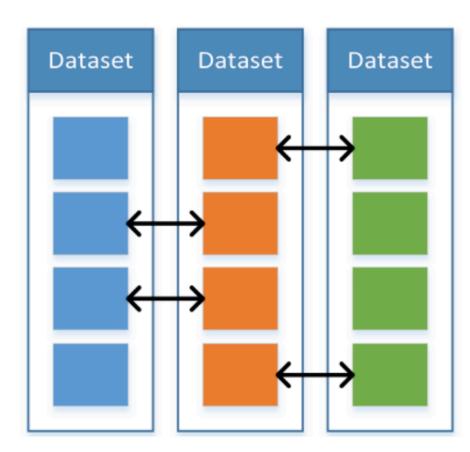


Core Challenge 5: Co-Learning

Three data settings.







Taxonomy of Multimodal Research

Representation

- Joint
 - Neural networks
 - Graphical models
 - Sequential
- Coordinated
 - Similarity
 - o Structured

Translation

- Example-based
 - Retrieval
 - o Combination
- Model-based
 - o Grammar-based

- Encoder-decoder
- Online prediction

Alignment

- Explicit
 - Unsupervised
 - Supervised
- Implicit
 - Graphical models
 - Neural networks

Fusion

- Model agnostic
 - o Early fusion
 - Late fusion
 - Hybrid fusion

- Model-based
 - Kernel-based
 - Graphical models
 - Neural networks

Co-learning

- Parallel data
 - o Co-training
 - Transfer learning
- Non-parallel data
 - Zero-shot learning
 - Concept grounding
 - Transfer learning
- Hybrid data
 - Bridging

Multimodal Applications

	CHALLENGES				
APPLICATIONS	REPRESENTATION	TRANSLATION	Fusion	ALIGNMENT	Co-learning
Speech Recognition and Synthesis					
Audio-visual Speech Recognition	✓		/	✓	✓
(Visual) Speech Synthesis	✓	✓			
Event Detection					
Action Classification	✓		/		✓
Multimedia Event Detection	✓		/		✓
Emotion and Affect					
Recognition	✓		/	✓	✓
Synthesis	✓	✓			
Media Description					
Image Description	✓	✓		✓	✓
Video Description	✓	✓	/	✓	✓
Visual Question-Answering	✓		/	✓	✓
Media Summarization	✓	✓	/		
Multimedia Retrieval					
Cross Modal retrieval	✓	✓		✓	✓
Cross Modal hashing	✓				✓

Recent Pre-trained Vision-Language Models

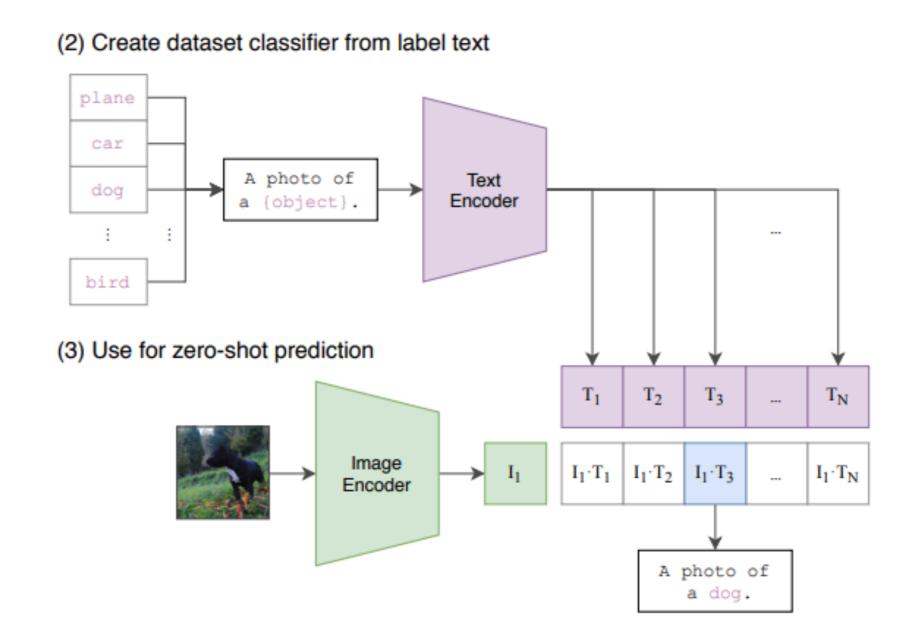
CLIP

 Pre-train V+L models using image captioning data (i.e., image-text pairs) by contrastive loss

(1) Contrastive pre-training Pepper the Text aussie pup Encoder T_1 T_2 T_3 T_N $I_1 \cdot T_2$ $I_1 \cdot T_1$ $I_1 \cdot T_3$ $I_1 \cdot T_N$ I_1 I_2 $I_2 \cdot T_1$ $I_2 \cdot T_2$ $I_2 \cdot T_3$ $I_2 \cdot T_N$ Image $I_3 \cdot T_2$ $I_3\!\cdot\! T_3$ $I_3 \cdot T_1$ $I_3 \cdot T_N$ I_3 Encoder $I_N \cdot T_3$ $I_N \cdot T_1 \mid I_N \cdot T_2$ $I_N \cdot T_N$ I_N

CLIP: Zero-shot Image Classification

Use a template + class label string to create a sentence

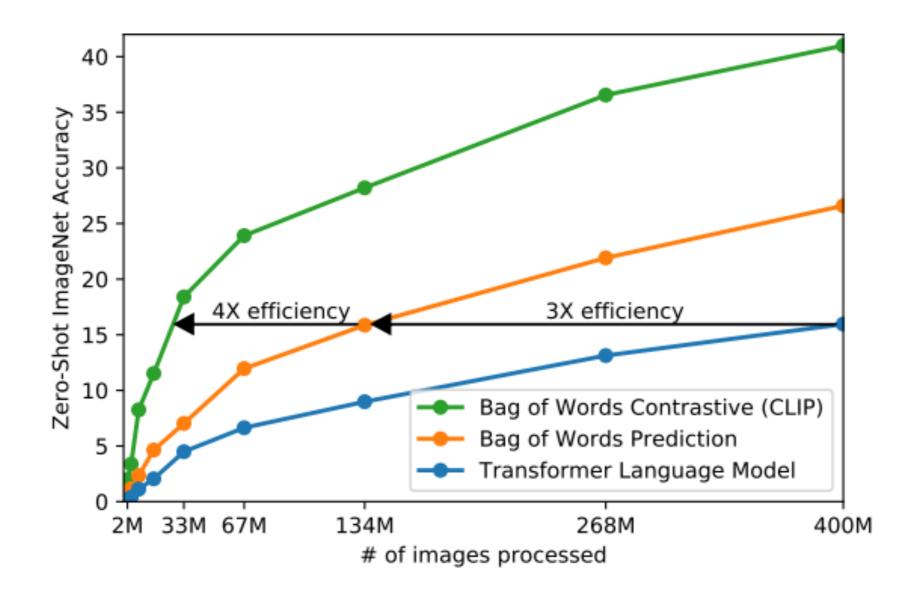


CLIP: pseudocode

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) #[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
```

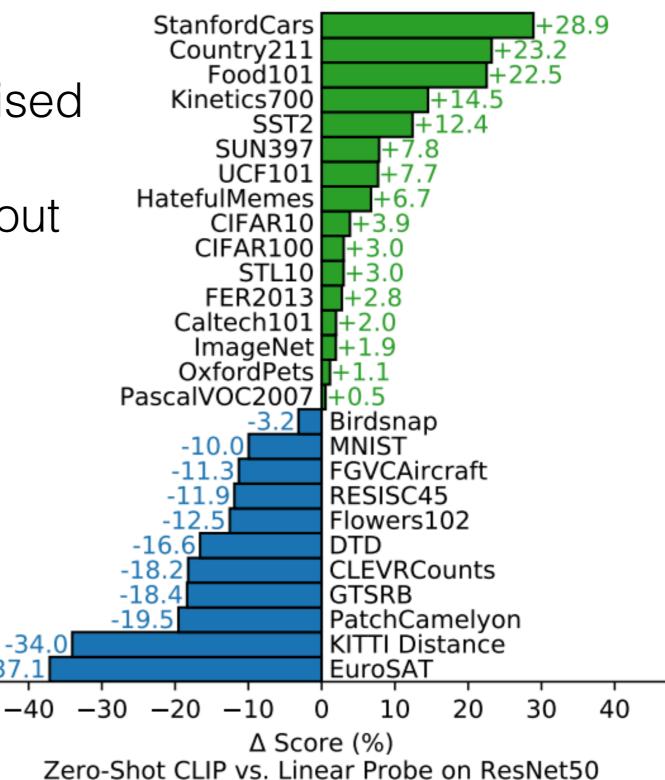
Efficiency of BoW Representations

 CLIP w/ BoW representations work better than transformer language model on zero-shot ImageNet prediction



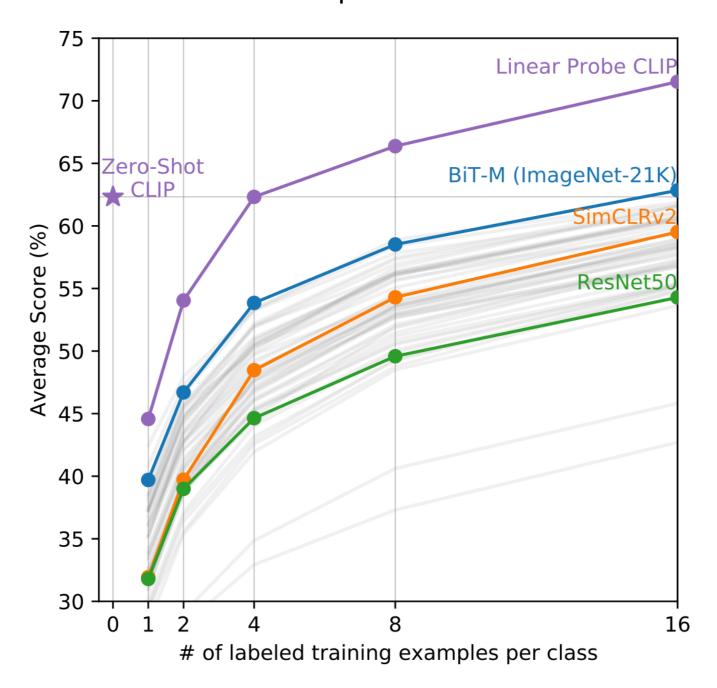
Zero-shot Image Classification

 Zero-shot CLIP classifier outperforms a fully supervised linear classifier fitted on ResNet-50 features on 16 out of 27 datasets (including ImageNet).



Few-shot Performance

- Zero-shot CLIP outperforms other few-shot baselines
- Few-shot CLIP further improves w/ a few labeled data.



DALL-E: Text-to-Image Generation

TEXT PROMPT

an illustration of a baby daikon radish in a tutu walking a dog

AI-GENERATED IMAGES

TEXT PROMPT

a store front that has the word 'openai' written on it....

AI-GENERATED IMAGES



TEXT & IMAGE PROMPT

the exact same cat on the top as a sketch on the bottom

AI-GENERATED IMAGES

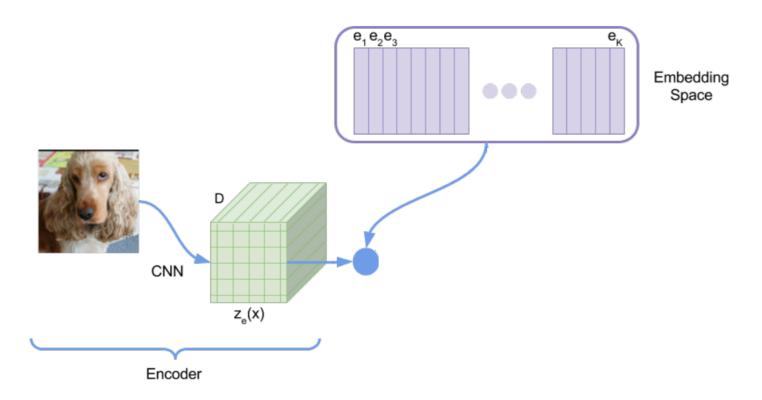
DALL-E

- Stage 1: Train a discrete VAE on only images (encode RGB images to image tokens (latent variable), and decode image tokens back to RGB images)
- Stage 2: Train a language model (LM) to generate a combined sequence of both text tokens and image tokens

DALL-E: dVAE Training

 Stage 1: Train a discrete variational autoencoder (dVAE or VQ-VAE, Oord et al. 2018) to compress each 256x256 RGB image into 32x32 grid of image tokens.

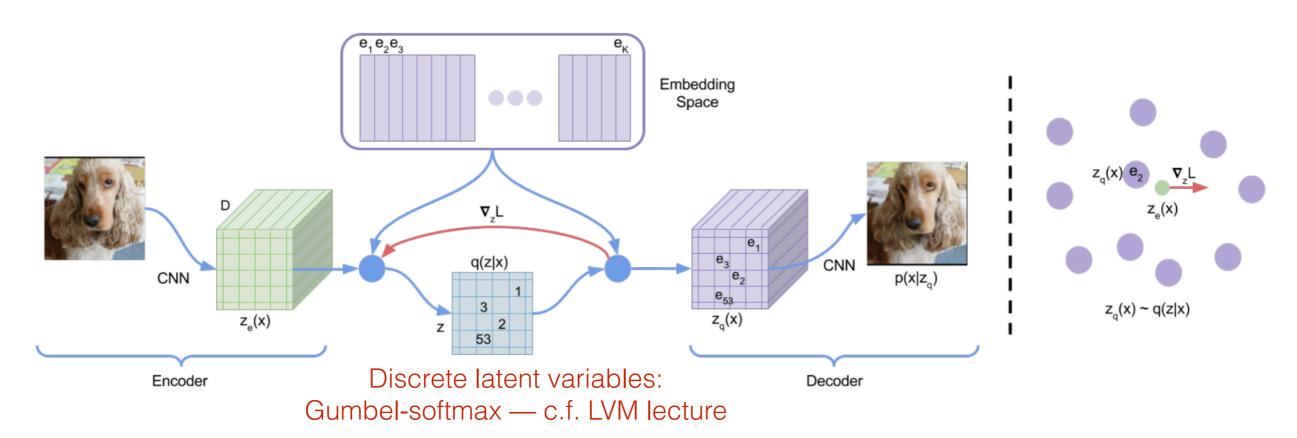
Each image token finds the nearest vector from a 8196 codebook (vocabulary)



DALL-E: dVAE Training

 Stage 1: Train a discrete variational autoencoder (dVAE or VQ-VAE, Oord et al. 2018) to compress each 256x256 RGB image into 32x32 grid of image tokens.

Each image token finds the nearest vector from a 8196 codebook (vocabulary)



VAE training:

Maximize Evidence Lower Bound

DALL-E: Language Model Training

• **Stage 2**: Concatenate up to 256 text tokens with the 32x32 (=1024) image tokens, and train an autoregression transformer to model the joint distribution of the text and image tokens.

Concatenate text & image tokens

Autoregressive LM training: Maximum Likelihood Estimation

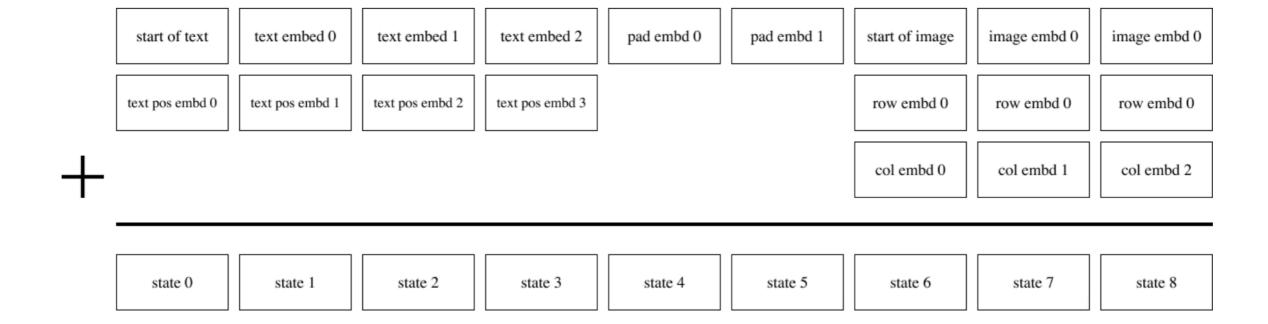
$$\max_{\psi} p_{\psi}(y, z)$$

1028 (32x32) image

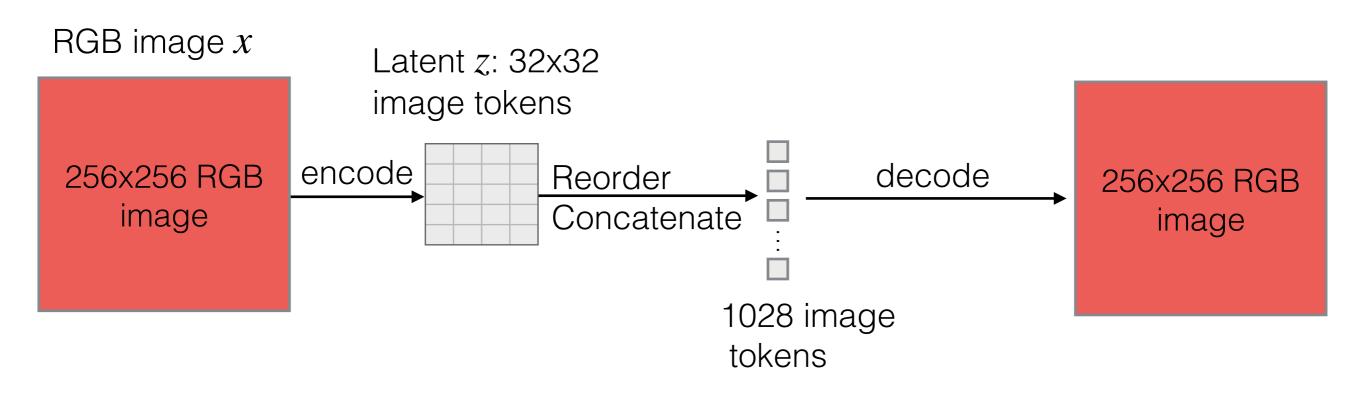
tokens, z

DALL-E: Language Model Training

 Representation of the combined text + image token sequence



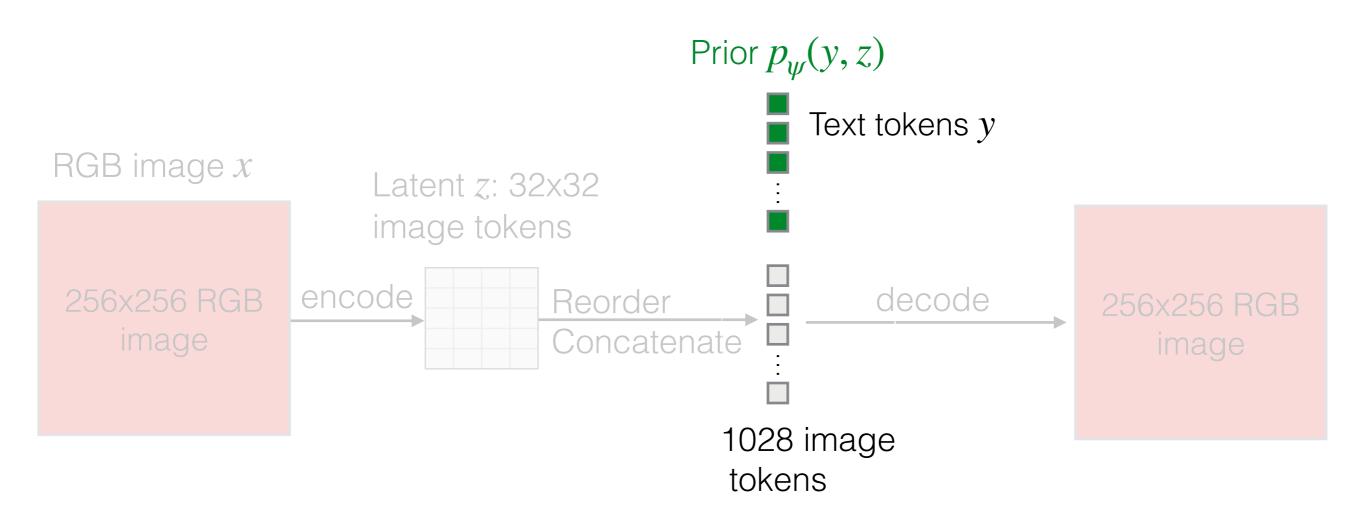
DALL-E: Stage 1



Encoder $q_{\phi}(y, z | x)$

Decoder $p_{\theta}(x | y, z)$

DALL-E: Stage 2



Encoder $q_{\phi}(y, z | x)$

Decoder $p_{\theta}(x \mid y, z)$

DALL-E: Overall Training Procedure

Maximize Evidence Lower Bound (ELB)— LVM lecture

$$\ln p_{ heta,\psi}(x,y) \geqslant \mathbb{E} \left(\ln p_{ heta}(x \mid y, z) - \sum_{z \sim q_{\phi}(z \mid x)} \left(\int D_{\mathrm{KL}}(q_{\phi}(y, z \mid x), p_{\psi}(y, z)) \right),$$

Stage 1 updates p_{θ} , q_{ϕ} and fixes p_{ψ} Stage 2 fixes p_{θ} , q_{ϕ} and updates p_{ψ}

- *x*: the RGB image (256x256)
- z: the 32x32 (=1024) image tokens
- y: the text up to 256 tokens
- q_ϕ is the distribution over text tokens and the 32x32 image tokens generated by dVAE encoder given the RGB image x
- p_{θ} is the distribution over the RGB image generated by dVAE decoder given the image tokens and text tokens
- p_w is the prior distribution over the text and image tokens.

DALL-E: Test Time

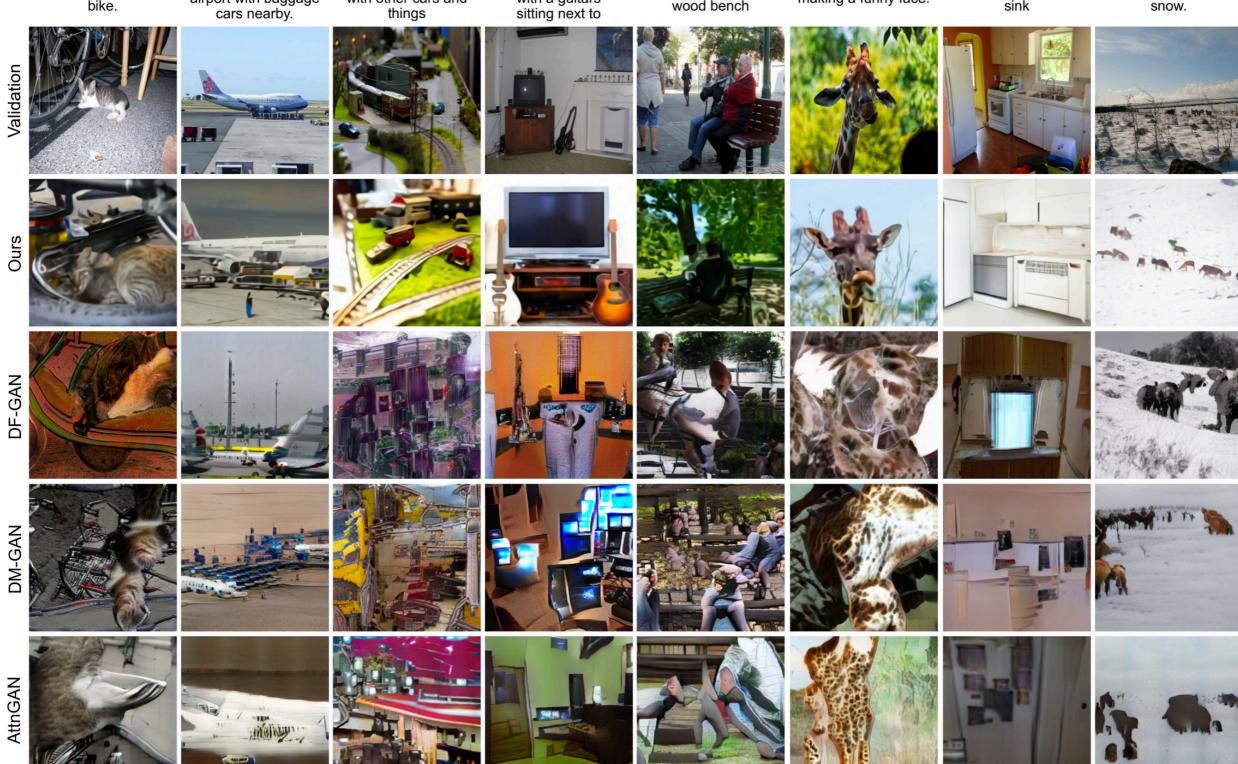
- Given a text prompt y, use the prior distribution (LM) to sample a sequence of 1028 image tokens
- Re-order 1028 image tokens to 32x32 shape
- Use dVAE's decoder to generate a RGB image from the image tokens.

Text-to-Image Generation

a very cute cat laying by a big bike. china airlines plain on the ground at an airport with baggage cars nearby. a table that has a train model on it with other cars and things a living room with a tv on top of a stand with a guitars sitting next to

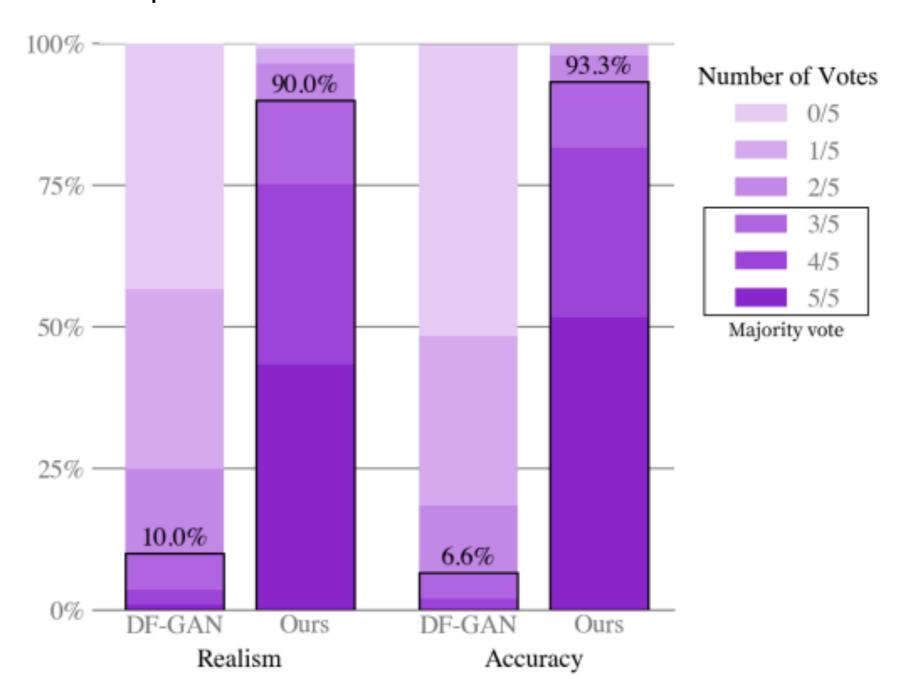
a couple of people are sitting on a wood bench

a very cute giraffe making a funny face. a kitchen with a fridge, stove and sink a group of animals are standing in the snow.



Human Eval on "Realism" and "Accuracy"

DALL-E outperforms DF-GAN



Sample, then Re-rank

 Sample K (e.g., K=1, 8, 64, 512) images from DALL-E, re-rank by CLIP, and pick the best output.

a group of urinals is near the trees

a crowd of people standing on top of a beach.

a woman and a man standing next to a bush bench.

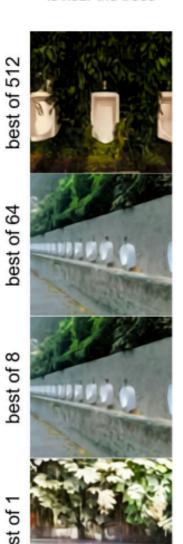
a bathroom with two sinks, a cabinet and a bathtub.

a man riding a bike down a street past a young man.

a truck stopped at an intersection where construction barriers are up.

a man sitting on a bench next to a slug.

a car covered in various empty toothpaste tubes.



Questions?