CS769 Advanced NLP

Syntactic Parsing 2:
Dependency Parsing

Junjie Hu

WISCONSIN

IIIIIIIIIIIIIIIIIIIIIIIIIIII

Slides adapted from Zhisong
hitps://junjiehu.github.io/cs769-spring22/



https://junjiehu.github.io/cs769-spring22/

Recap: syntactic Parsing

* Two types of linguistic structures:

Dependency-tree properties:

1. No multiple edges between two words

2. Each word (except root) has only one head
3. No cycles

4. (Optional) Projective (i.e., no cross edges)

S
A\
NP VP

o~ bed
PN N vy NP et
| | P NS N\ RN
M d | root My dog ate a  sausage
y dog ate D N PN N v D N

a sausage

Constituency (aka phrase structure) tree: Dependency tree:
Focus on the structure of the sentence Focus on relations between words



Predicting relations between two words

 Dependency tree consists of (head, relation, dependent) triples

Relation Examples with head and dependent
NSUBIJ United canceled the flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
IOBJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CON]J We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.

CASE Book the flight through Houston.




Universal Dependency relations
(de Marnefte et al., 2014)

Clausal Argument Relations Description

NSUBJ Nominal subject

DOBJ Direct object

IOBJ Indirect object

CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description

NMOD Nominal modifier

AMOD Adjectival modifier
NUMMOD Numeric modifier

APPOS Appositional modifier
DET Determiner

CASE Prepositions, postpositions and other case markers
Other Notable Relations Description

CON]J Conjunct

CC Coordinating conjunction




Property of Parse Tree

Constraints Violation Example Decoding Algorithm

No multiple-edges X1 -> x2; x1 -> x2; Enumeration (Binary class.)
Single-head X1 -> x2 <-x3 Enumeration (Head class.)
No-cycle (acyclic) X1 -> x2; x2 -> x1; Chu-Liu-Edmonds
No-cross (projective) X1 -> x3; X2 -> x4; Eisner’s DP

/X\ Dependency-version
of CYK.

Xx1 x2 x3 x4



Goal for Today

Transition-based parsing:
 Decoding algorithm: shift-reduce (Aho & Ullman, 1972)

 Modeling: feature-based, neural network, pre-trained models

Graph-based parsing:
* Decoding algorithm: Chu-Liu-Edmonds (1965, 1967)

 Modeling: feature-based, neural network, pre-trained models

Data resources: labeled data for supervised prediction, or
zero-shot prediction

 Universal dependencies

e Cross-lingual transfer learning



Transition-basead
Parsing



Transition-based Parsing

* Developed for analyzing programming languages (Aho, Ullman, 1972)
e Stack: data structure to build the parse tree. Initially empty.

* Input buffer: stores tokens to be parsed. Initially contains the sentence.
* Relation set: stores the predicted arcs. Initially empty.

e Parser takes actions on the parse by a predictor called Oracle.

Input buffer
wl | w2 wn
st ( Parser h Dependency
2 Action |- TARC Relations
Stack | - | Oracle | *IRIGHTARC| —
w3 w2
First-In-Last-Out SHIFT
\. W,
Sh




Shift-Reduce Algorithm

MaltParser (Nivre et al. 2006)
* The parser goes through the sentence (bufter) from left to
right

e At each time, the oracle makes a transition action based
on the current state (a.k.a. configuration) of the stack,
bufter, relation set:

arg max P(Action|State)

o LeftArc: assert a left arc from the first word at the top
of the stack to the second word (s2 < s1); remove the
dependent (s2)

* RightArc: assert a right arc from the second word at
the top of the stack to the first word (s2 — s1); remove
the dependent (s1)

e Shift: Shift the word from the buffer to the stack

s1

s2

Stack [ ‘-

SN




Shift-Reduce Algorithm

MaltParser (Nivre et al. 20006)

* The Oracle for greedily selecting the appropriate transition is
trained by supervised learning on labeled data.

* During testing, we simply apply the Oracle’s predictions to
get the parse tree

function DEPENDENCYPARSE(words) returns dependency tree

state <— {[root], [words], [] } ; initial configuration
while szate not final
t<— ORACLE(state) ; choose a transition operator to apply

state <— APPLY(?, state) ; apply it, creating a new state
return state

10



Shift-Reduce (Example)

Example: Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
7 [root, book, the, flight LEFTARC (the < flight)
8 [root, book, flight] RIGHTARC (book — flight)
9 [root, book ] RIGHTARC (root — book)
10 [root] Done

@ dOb]

Book me the morning flight

11



_earning: Create Training Data

* (iven a sentence and a dependency tree, simulate the shift-
reduce process to create (state, action) pairs

* Choose LeftArc if the top two words on the stack has a left
arc in the ground-truth parse tree.

* Choose RightArc if (1) the top two words on the stack has
a right arc in the ground-truth parse tree and (2) all the
dependents of top first word has been assigned.

 (Otherwise, choose Shift.

(sentence, tree) pairs:
(zoot]

dobj P(Action|State) = score(Action, State)

e
Y

Book the flight through Houston

12



_earning: Create Training Data

* Why the RightArc’s condition is important?

* Need to make sure “tlight” has assigned its dependents;
otherwise “flight” will be reduced and its dependent
“‘Houston” cannot find the arc to “flight”

State:
Stack | Word buffer | Relations
[root, book, flight] ‘ [through, Houston] ‘ (the < flight)

(sentence, tree) pairs: Action: Shift? or (book—flight)?
(toot)
dobj

det

Book the ﬂighf  through Houston

13



Hand-crafted Features

e Extract the features from the top two words (s1, s2) on the stack, and
the words (b1, b2, ...) on the buffer.

e Train a logistic regression model on the scores weighted by features

P(Action|State) = softmax(W f(Action, State) + b)

Feature template <S1°W7 0p>7 <S2°W7 0p> (Sl.t,0p>, (Sz.t,0p>
(Uni-gram features) (b1.w,0p), (b1.t,0p)(s1.wt,0p)
E.g., concrete features (s1.w = flights,op = shift

)
for Shift operator: (s2.w = canceled, op = shifi)
(s1.t = NNS, op = shift)

(s2.t = VBD,op = shift)
. - (b1.w = to,op = shift)
- Sparsity! Millions of features! (bll.tzTO,opzshift>
)

(s1.wt = flightsNNS, op = shift 14



Neural Network

* Use embeddings to learn the feature of configuration (state) of
the stack, buffer, relation, and compute the score between state
and action by a feedforward network (Chen & Manning, 2014)

Softmax layer: [ o ]

p = softmax(Wsh)
Hidden layer: \ )/\ ‘

h=Wyz® + Wizt + Wizt + )3 ( i J
tnput layer: [¢*,a*,2!] [ - G D N\
words POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good_JJ control. NN ...
— nsubj
He_PRP

 Words: (1) top 3 words on stack/buffer; (2) 1st, 2nd leftmost/rightmost children of
top two stack words; (3) left/right-most grandchildren of top two stack words

 POS tags: POS tags of selected words.

* Arc labels: arc labels of selected words excluding (1) those 6 words on stack/buﬁ‘e1r5



Neural Network

* |nstead of just using word embedding, use a neural network to
encode the sentence first, and then take the embeddings of the top

two words on th
a feedforward n

e stack and first word on the buffer to pass through
etwork. (Kiperwasser 2016, Kulmizev et al., 2019)

Input buffer N
Parser Oracle
W ...
s e(w) | [ : Dependency
i >>< \ﬂ/ 0 Action _,| Relations
s1 S es1) | FFN % LEFTARC
= RIGHTARC —
Stack [ <o 2| | |e(s2 JUK 2 il w3 w2
Tttt t tt
C ENCODER
F=F f f 1 1
wi w2 w3 w4 w5 wé

16



Shift-Reduce Parsing

 Pros:
* Process input from left to right only once — Fast O(n)

* (Can make use of rich features from current contiguration

 Cons:
* Decisions are local and greedy

e Cannot make use of information from right of the
attachment point (i.e., limited look-ahead window).

17



Alternative Algorithm: Beam Search

* Rather than greedily taking the argmax to predict the action
from P(ActionlState) at each time step, we can do beam

search

* Expand K top-scoring candidates for each action
seguence In the beams, produce K2 possible action

sequences.
* Pruning and keep only the top K scoring action sequences.

* Recover action mistakes at early states, usually perform better
than greedy search, but slower.

18



Alternative Algorithm: Easy-first

 Non-directional easy-first parsing (Goldberg and Elhadad, 2010)
* No explicit stack/buffer, or with a stack/buffer of non-reduced tokens.
* Only two types of actions (AttachRight & AttachLeft), both create new arcs

(1) ATTACHRIGHT(2)

-157 -68 -197 -152 231
a brown fox jumped with joy
N~ -~ ~N_ ~_ ~
27 403 -47 243 3
(2) ATTACHRIGHT(1) (3) ATTACHRIGHT(1)
52 -159 -176 246 -133 -149 246
a fox jumped with joy fox jumped with joy
314 0 -146 12 / \270 -154 10
brown a brown
(4) ATTACHLEFT(2) (5) ATTACHLEFT(1) (6)
-161 186 430 )
PR — R jumped
jumped with joy jumped with
-435 -2 -232
fox with

fox fox joy / \
/ \ / \ a brownjoy
a

brown a brown



Graph-based Parsing



Maximum Spanning Tree (MST)

* Define a fully connected graph G with scores over edges

« Finding the best parse T(S) for a sentence Sis equivalent to
find a MST over G
* Assume the total score can be (first-order) edge-factored.

T (S) = argmax Score(t, S) Score(t,S) ZScore

€Y ect

e

21



Decoding Algorithm:
Chu-Liu Edmonds (CLE, 1965)

Chu-Llu-Edmonds(q, s) Greedy maximum /wot \
Graph G = (V, F) 20 "‘ww N

__ Edge weight fanction s - £ — R L M

l. LetM ={(z%,2): 2z € V,z* = argmax_, s(z’,z)} \

2. LetGpy = (V M )

3. If GM has no cycles then it is an MST: return GM The first stfep of the a.llgo.nthm .1s to find, for each
'merwmejﬁ v cycIe (7 : ﬁ-(-:,-- word, the highest scoring incoming edge

Q‘- root

5. Let (“'c = contract(G, C, s) T = %0

6. et y = Chu-Liu-Edmon s(uc, s)” o w” DW

7. Fmdavertexz eCs.t.(z',2) ey, (2", x =

8

Contract

return y U C' — {(z", z)}

have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

Rerun CLE  Z—~, °

Recursive & Repack

- N
—_— - -~ saw 30
root 40 root // - _ Wi - _ //
C D John - Mari
- 10 o - Y
- = ~ \ -
//’ ’saw/ 30 ”""""'““"'b' _ saw \-—K, _/
- _ Wjs _ \ 2~ 30 30 31
/ John - Mary John Mary
\ -
N

Final parse tree -



How to score each edge”

* Feature-based: with manually designed features and linear
model

* (Early) Neural network: with atom input features and NN
scorer

* (Recent) Pre-trained encoder: with contextualized
representations

23



Hand-crafted Features

b
a) ) C)
Basic Uni-gram Features Basic Big-ram Keatures In Between POS Features
p-word, p-pos p-word, p-pos, c-word, c-pos - - -
p-word p-pos, c-word, c-pos p-pos, b-pos, c-pos
p-word, c-word, c-pos Surrounding Word POS Features

p-pos ’ ) 3 - . - -
c-word, c-pos p-word, p-pos, c-pos p_pgz’_ f) p?SZsl,cC- POOSS_ llﬁcc- POOSS
c-word p-word, p-pos, c-word P-pos-1, p-pos, €-pos-1, ¢-p
c-pos p-word, c-word p-pos, p-pos+1, c-pos, c-post1

P p-poS, C-pos p-pos-1, p-pos, c-pos, c-pos+1

Table 1: Features used by system. p-word: word of parent node in dependency tree. c-word: word of child
node. p-pos: POS of parent node. c-pos: POS of child node. p-pos+1: POS to the right of parent in sentence.
p-pos-1: POS to the left of parent. c-pos+1: POS to the right of child. c-pos-1: POS to the left of child.
b-pos: POS of a word in between parent and child nodes.

l[oron] read|verb] the[det] book[noun] .[punct] — score(book, read)
a) p-word, p-pos = <read, verb>; c-word, c-pos = <book, noun>; ...
b) p-word, p-pos, c-word = <read, verb, book>; ....

C) p-pos, p-pos+1, c-pos-1, c-pos = <verb, det, det, noun>; ....

score(e) = W f(e) - Sparsity! Millions of features!

24



Neural Network

(Kiperwasser & Goldberg, 2016)

« Remember that for parsing, we have full input sentence as the input! We
can use any NN encoders (e.g., Bi-LSTM) to get the word
representations, and then edge representations (fusion of two words).

S

Vihe Vbrown Vfox Vjumped V.
A c A— y ry 1 Iy < . .
The inputs to the final
scorer now contains
'+ LSTM" | " LSTM" | " LSTM?® ! ' LSTM?® ! + LSTM" . :
sopmeet | Reempeeet | Reempeees ) beepeees | beepee-t o the information of the
..... full sentence.
% LSTM/ —|— LSTM/ —|— LSTM! —|— LSTM/ —|— LSTM/

Xthe Xbrown Xfox Xjumped X

Ground-truth edge or



Deep Biaffine Scorer

(Ducat & Manning, 2017)

 Probably nowadays the “standard” parsing scorer architecture.
e |ntuition:

e [or each word, learn two representations for the word being a head
and a dependent

e Biaffine function to compute scores between possible head-dip pairs

H(a.'r(:-dcp) D 1 U(arc) H(arc-h,ead) S(a.'r(:)
— T
e 08 (I (0000
©00)0 06 o0 _ |eeee
[@00]|® XX (©00)
(T 1|© (000 (0000
MLP: h(arc-de:p) h(_ar(:-h.ead) ‘./‘ 000 000 ,.\‘.
Y T N/ N/
BiLSTM: r; 0000/ 0000/« 0000 0000 <> - | 00000000 < (0000|0000
Embeddings: x; (000 @00 000/ 000
/ \ [ \

root ROOT Kim NNP



Progress over Years

* Move towards fine-tuning pre-trained models (e.g., XLNet, Bert)

* Results: https://nlpprogress.com/english/dependency_parsing.html

Model POS UAS LAS Paper / Source Code
Label Attention Layer 97.3 | 97.42 | 96.26 | Rethinking Self-Attention: | Official
+ HPSG + XLNet Towards Interpretability
(Mrini et al., 2019) for Neural Parsing
ACE + fine-tune 97.20 | 95.80 | Automated Concatenation | Official
(Wang et al., 2020) of Embeddings for
Structured Prediction
HPSG Parser (Joint) 97.3 | 97.20 | 95.72 | Head-Driven Phrase Official
+ XLNet (Zhou et al, Structure Grammar
2020) Parsing on Penn
Treebank
Second-Order MFVI 96.91 | 95.34 | Second-Order Neural Official
+ BERT (Wang et al., Dependency Parsing with
2020) Message Passing and
End-to-End Training
CVT + Multi-Task 97.74 | 96.61 | 95.02 | Semi-Supervised Official
(Clark et al., 2018) Sequence Modeling with
Cross-View Training
CRF Parser (Zhang 96.14 | 94.49 | Efficient Second-Order Official
et al., 2020) TreeCRF for Neural
Dependency Parsing

27


https://nlpprogress.com/english/dependency_parsing.html

Pre-trained Model + Multi-task

(Zhou et al. 2020)

* Jointly optimize dependency parsing, constituency parsing,
semantic role labeling

Federal
NNP

Paper
NNP

wood
NN

products
NNS

Input

(

_—

) ( T e N o7 ST T
[ ‘ . .) > . —- ) [uﬁlﬁ) ; u'] |
Q) | — "":\ o
I I
| Dependency Head Score I : [ﬁ,;,\%;,‘;n, [f,h';j, 3:,',, ] |
- | ,,1—-, = S
— ' ® | < e |
o000 > . L { ([ ]_U _ 9 S L AR 0 2 M G
S o @ | [ *J* o |
| Constituent Span Score I "FJ\D P‘"P* products |
(Ceoe® > | o ; | P A
| | I ' E— : = Label score | \ Jomt Span Structure P*’P"r «mS wwd P /
{ I x2S~ _ - - 5 6 7 -
! | —_ - - " —- === -~
( . . .] _T . % -‘_, o0 3 _ Broadcast e Q) : | v ' ’\Jl / Al *1\1 \
| predicate score § _l_‘ Federal Papcr Boarpcr and wood_'products.} |
| | | . ' so:nax | | . b\__--- e --_;7"1' A\J‘, |
[ . . .J —> | Argument score / l AT Al |
) U )7 scmanticRoleScore _~ . SpanandDependency SRL_
Token Self-Attention :
Representation Layers Scoring Layer Decoder Layer

28



Transition vs Graph parsing

Graph-based

e Local factorization

2008
 Global inference
o Mostly CLE O(ns3)
e some O(nlogn + N2) (Gabow et al. 1986)
Transition-based
 [ocal normalization
* Rich output features

2014

e Linear time O(n) with shift-reduce

Both can reach similar results, but Graph-
based produces projective tree while
transition-based may not

LAS: 83.8 v. 83.6

Transition-based Parsers
Local Inference
Local Learnng

Global Feature Scope

Graph-based Parsers
Global Inference
Global Learning

Local Feature Scope

higher-order chart parsing beam search

pruning perceptron
ILP dynamic oracles
dual decomp dynamic programming

mildly non-projective more features
etc. etc.

\/ \J

Transition-based Parsers
Global Inference
Global Learnng

Global Feature Scope

Graph-based Parsers
Global Inference
Global Learnng

Global Feature Scope

LAS: 85.8 v. 85.5

**Evaluated on overlapping 9 languages in studies**

29



Transition vs Graph parsing

09

MSTParser

« Deep Contextualized Word Embeddingsin | . = MatParser
Transition-based and Graph-based
Dependency Parsing — A Tale of Two
Parsers Revisited (Kulmizev et al. 2019)

Dependency precision

* Pre-trained model allows parsers to
pack info about global sentence

05

structure into local feature 0 2 4 6 8 10 12 14

. Dependency length
representations.
model ~ §¢  §rE - SraB

* They benefit transition-based parsers
more than graph-based parsers,
making the two approaches 0.8
approximately equivalent in terms of o
both accuracy and error profile.

0.9

0.7 D T T

0.6

root 1 2 3 4 5 6 7 8 9 >=10
Dependency Length

30



Models atter Pre-training

* A "huge change” to the parsing models?
 Maybe not (only changing the scorers)?

* The basic parsing paradigms are almost the same.

* However, this indeed brings changes:
 Somehow blur the distinctions between graph-/transition-based methods
 (Computational complexity:
e (CPU-oriented), graph O(n3) > transition O(n)

 (GPU-oriented), graph (easier to parallelize) <= transition (not so GPU-friendly?)

 What stills remains interesting is not shifted towards the data resources.

31



Data Resources



2018

2017

2009

2008

2007

2006

Data Resources

 There have been 6 CoNLL shared tasks related with dependency parsing

Multilingual Parsing from Raw Text to Universal
Dependencies

Multilingual Parsing from Raw Text to Universal
Dependencies

Syntactic and Semantic Dependencies in Multiple

Languages

Joint Parsing of Syntactic and Semantic

Dependencies

Dependency Parsing: Multilingual & Domain
Adaptation

Multi-Lingual Dependency Parsing

multilingual

Universal
multilingual Dependency
multilingual
English Language

specific
multilingual
multilingual

33



Resources: Overview

* There can be multiple ways of constructing dependency
trees, for example, for English, multiple ways of converting
from constituency trees to dependencies:

e PennZMalt -> LITH-Convertor (for CoNLL tasks) ;; SD
(stanford) -> UD

* There are many things that need to be specified:

VMO /\ mMOD obl It’'s hard to say which one is
°a;°f/\ “correct” or “better”, but we need
O

school Go to school

to arrive at something consistent.

34


https://cl.lingfil.uu.se/~nivre/research/Penn2Malt.html
https://nlp.cs.lth.se/software/treebank_converter/
https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf

Universal Dependency

 Updated every halt year

* https://universaldependencies.org/

The data is released through LINDAT/CLARIN.

e The next release (v2.9) is scheduled for November 15, 2021 (data freeze on November 1).
« Version 2.8 treebanks are available at http://hdl.handle.net/11234/1-3687. 202 treebanks, 114 languages, released May 15, 2021.
183 treebanks, 104 languages, released November 15, 2020.

» Version 2.7 treebanks are archived at http://hdl.handle.net/11234/1-3424.
» Version 2.6 treebanks are archived at http://hdl.handle.net/11234/1-3226.
» Version 2.5 treebanks are archived at http://hdl.handle.net/11234/1-3105.
» Version 2.4 treebanks are archived at http://hdl.handle.net/11234/1-2988.
» Version 2.3 treebanks are archived at http://hdl.handle.net/11234/1-2895.
» Version 2.2 treebanks are archived at http://hdl.handle.net/11234/1-2837.
» Version 2.1 treebanks are archived at http://hdl.handle.net/11234/1-2515.

163 treebanks, 92 languages,
157 treebanks, 90 languages,
146 treebanks, 83 languages,
129 treebanks, 76 languages,
122 treebanks, 71 languages,
102 treebanks, 60 languages,

released May 15, 2020.
released November 15, 2019.
released May 15, 2019.
released November 15, 2018.
released July 1, 2018.
released November 15, 2017.

« Version 2.0 treebanks are archived at http://hdl.handle.net/11234/1-1983. 70 treebanks, 50 languages, released March 1, 2017.

o Test data 2.0 are archived at http://hdl.handle.net/11234/1-2184. 81 treebanks, 49 languages, released May 18, 2017.
« Version 1.4 treebanks are archived at http://hdl.handle.net/11234/1-1827. 64 treebanks, 47 languages, released November 15, 2016.
« Version 1.3 treebanks are archived at http://hdl.handle.net/11234/1-1699. 54 treebanks, 40 languages, released May 15, 2016.
« Version 1.2 treebanks are archived at http://hdl.handle.net/11234/1-1548. 37 treebanks, 33 languages, released November 15, 2015.
« Version 1.1 treebanks are archived at http://hdl.handle.net/11234/LRT-1478. 19 treebanks, 18 languages, released May 15, 2015.
« Version 1.0 treebanks are archived at http://hdl.handle.net/11234/1-1464. 10 treebanks, 10 languages, released January 15, 2015.

« In general, we intend to have regular treebank releases every six months. The v2.0 and v2.2 releases were brought forward because of their

usage in the CoNLL 2017 and 2018 Multilingual Parsing Shared Tasks.



https://universaldependencies.org/

Universal Dependency

e 37 universal syntactic relations used in UD v2. It is a revised version of
the relations originally described in Universal Stanford Dependencies: A

cross-linguistic typology (de Marneffe et al. 2014).

nsubj csubj

nurmmod

obj ccomp

iobj Xcomp

obl advel advmod* aux
vocative discourse cop
expl mark
dislocated

nmod acl amod det
appos clf

case

conj fixed list orphan punct
cc flat parataxis goeswith root
compound reparandum dep

36


http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf

Universal Dependency

“Universal Dependencies (UD) is a project that is developing cross-linguistically
consistent treebank annotation for many languages, with the goal of facilitating
multilingual parser development, cross-lingual learning, and parsing research from
a language typology perspective.”

punct»
obl»
nsubj:pass case
«det aux:pass det

DET# NOUN:z | [AUXz VERBz | [ADP| [DET# NOUN:# | [PUNCT
—_— —— e, —_—— —~— e, —r— A
The dog was chased by the cat
punct
nsubj:pass obl» \
NOUN#] [PRONz [« &Pt PaSNVERB: | ADP[ “®**N'NOUNz] [PUNCT
——— —— ~— —— M
Kyuseto  ce npecnejsaile ofT KoTKaTta
nsubj:pass punct
NOUNz | [AUXz [FH0Pass \}VERB# /O OUN | PUNCT
—A— e, . e e ~
Pes byl honén koCkou
nct
obl . \
NOUNz | <"ubiPassNyepeY (aDP] “®** N NOUN# | [PUNCT
—_— — s

Hunden jagades av katten



UD + Cross-lingual Transfer

e Dsfsd Cross-lingual transfer: Transfer from high-resource languages
to low-resource ones. (* UD provides a great test-bed for this!)

* One specific interest thing is zero-shot transfer, where no trees for
the target languages are available.

e This can be achieved with aligned multilingual word embeddings,
or ...

38



Multilingual Contextualized Representations

* Simply multilingual contextualized pre-trained encoders,
which have been shown quite effective for cross-lingual
transfer (Wu and Dredze, 2019).

Still an interesting question: how BERT/mBERT encodes syntax so that simply
multilingual pre-training seems to be able to “align” syntactic information?

39


https://aclanthology.org/D19-1077.pdf

UD 1s not Prefect

There can be consistency problems (an open collaboration
project).

Many treebanks are converted from constituency treebanks
rather than from directly dependency annotations.

English-centric (remember it's derived from Stanford
Dependencies).

Are the UD choices the most reasonable ones”?

 Arguments and Adjuncts (Przepidérkowski and Patejuk, 2018)

e (Coordinate Structures (Kanayama et al., 2018)

40


https://aclanthology.org/C18-1324.pdf
https://aclanthology.org/W18-6009.pdf

Related Materials

Online demo http://lindat.mff.cuni.cz/services/udpipe/

Nice parsers: stanza, udpipe, udify

More on UD: https://universaldependencies.org/

EACL17 Tutorial: universaldependencies.org/eacli /tutorial/

41


http://lindat.mff.cuni.cz/services/udpipe/
https://stanfordnlp.github.io/stanza/
https://ufal.mff.cuni.cz/udpipe
https://github.com/Hyperparticle/udify
https://universaldependencies.org/
http://universaldependencies.org/eacl17tutorial/

Questions?



