
CS769 Advanced NLP

Syntactic Parsing 2:

Dependency Parsing

Junjie Hu

Slides adapted from Zhisong
https://junjiehu.github.io/cs769-spring22/

1

https://junjiehu.github.io/cs769-spring22/

Recap: Syntactic Parsing
• Two types of linguistic structures:

2

Constituency (aka phrase structure) tree:

Focus on the structure of the sentence

Dependency tree:

Focus on relations between words

Dependency-tree properties:

1. No multiple edges between two words

2. Each word (except root) has only one head

3. No cycles

4. (Optional) Projective (i.e., no cross edges)

Constituency tree: internal nodes for phrases

Dependency tree: only input words as nodes

Predicting relations between two words
• Dependency tree consists of (head, relation, dependent) triples

3

Universal Dependency relations

(de Marneffe et al., 2014)

4

Property of Parse Tree

5

Goal for Today
• Transition-based parsing:

• Decoding algorithm: shift-reduce (Aho & Ullman, 1972)
• Modeling: feature-based, neural network, pre-trained models

• Graph-based parsing:

• Decoding algorithm: Chu-Liu-Edmonds (1965, 1967)

• Modeling: feature-based, neural network, pre-trained models

• Data resources: labeled data for supervised prediction, or
zero-shot prediction

• Universal dependencies

• Cross-lingual transfer learning

6

Transition-based
Parsing

7

Transition-based Parsing
• Developed for analyzing programming languages (Aho, Ullman, 1972)

• Stack: data structure to build the parse tree. Initially empty.

• Input buffer: stores tokens to be parsed. Initially contains the sentence.

• Relation set: stores the predicted arcs. Initially empty.

• Parser takes actions on the parse by a predictor called Oracle.

8

First-In-Last-Out

Shift-Reduce Algorithm

MaltParser (Nivre et al. 2006)

• The parser goes through the sentence (buffer) from left to
right

• At each time, the oracle makes a transition action based
on the current state (a.k.a. configuration) of the stack,
buffer, relation set:

• LeftArc: assert a left arc from the first word at the top
of the stack to the second word (s2 s1); remove the
dependent (s2)

• RightArc: assert a right arc from the second word at
the top of the stack to the first word (s2 s1); remove
the dependent (s1)

• Shift: Shift the word from the buffer to the stack

←

→

9

• The Oracle for greedily selecting the appropriate transition is
trained by supervised learning on labeled data.

• During testing, we simply apply the Oracle’s predictions to
get the parse tree

10

Shift-Reduce Algorithm

MaltParser (Nivre et al. 2006)

Shift-Reduce (Example)
Example: Book me the morning flight

11

Learning: Create Training Data
• Given a sentence and a dependency tree, simulate the shift-

reduce process to create (state, action) pairs

• Choose LeftArc if the top two words on the stack has a left

arc in the ground-truth parse tree.

• Choose RightArc if (1) the top two words on the stack has

a right arc in the ground-truth parse tree and (2) all the
dependents of top first word has been assigned.

• Otherwise, choose Shift.

12

(sentence, tree) pairs:

Learning: Create Training Data
• Why the RightArc’s condition is important?

• Need to make sure “flight” has assigned its dependents;
otherwise “flight” will be reduced and its dependent
“Houston” cannot find the arc to “flight”

13

(sentence, tree) pairs:

State:

Action: Shift? or (book flight)?→

Hand-crafted Features
• Extract the features from the top two words (s1, s2) on the stack, and

the words (b1, b2, …) on the buffer.

• Train a logistic regression model on the scores weighted by features

14

Feature template:

(Uni-gram features)

E.g., concrete features

for Shift operator:

- Sparsity! Millions of features!

Neural Network

• Use embeddings to learn the feature of configuration (state) of

the stack, buffer, relation, and compute the score between state
and action by a feedforward network (Chen & Manning, 2014)

15

• Words: (1) top 3 words on stack/buffer; (2) 1st, 2nd leftmost/rightmost children of
top two stack words; (3) left/right-most grandchildren of top two stack words

• POS tags: POS tags of selected words.

• Arc labels: arc labels of selected words excluding (1) those 6 words on stack/buffer

• Instead of just using word embedding, use a neural network to
encode the sentence first, and then take the embeddings of the top
two words on the stack and first word on the buffer to pass through
a feedforward network. (Kiperwasser 2016, Kulmizev et al., 2019)

16

Neural Network

Shift-Reduce Parsing
• Pros:

• Process input from left to right only once — Fast O(n)

• Can make use of rich features from current configuration

• Cons:

• Decisions are local and greedy

• Cannot make use of information from right of the

attachment point (i.e., limited look-ahead window).

17

Alternative Algorithm: Beam Search

• Rather than greedily taking the argmax to predict the action
from P(Action|State) at each time step, we can do beam
search

• Expand K top-scoring candidates for each action

sequence in the beams, produce K2 possible action
sequences.

• Pruning and keep only the top K scoring action sequences.

• Recover action mistakes at early states, usually perform better
than greedy search, but slower.

18

Alternative Algorithm: Easy-first
• Non-directional easy-first parsing (Goldberg and Elhadad, 2010)

• No explicit stack/buffer, or with a stack/buffer of non-reduced tokens.

• Only two types of actions (AttachRight & AttachLeft), both create new arcs

19

Graph-based Parsing

20

Maximum Spanning Tree (MST)
• Define a fully connected graph G with scores over edges

• Finding the best parse for a sentence S is equivalent to
find a MST over G

• Assume the total score can be (first-order) edge-factored.

21

Decoding Algorithm:

Chu-Liu Edmonds (CLE, 1965)

22

Greedy maximum

Contract

Rerun CLERecursive & Repack

Final parse tree

How to score each edge?
• Feature-based: with manually designed features and linear

model

• (Early) Neural network: with atom input features and NN
scorer

• (Recent) Pre-trained encoder: with contextualized
representations

23

Hand-crafted Features

I[pron] read[verb] the[det] book[noun] .[punct] score(book, read)

a) p-word, p-pos = <read, verb>; c-word, c-pos = <book, noun>; …

b) p-word, p-pos, c-word = <read, verb, book>; ….

c) p-pos, p-pos+1, c-pos-1, c-pos = <verb, det, det, noun>; ….

→

24
- Sparsity! Millions of features!

Neural Network

(Kiperwasser & Goldberg, 2016)

• Remember that for parsing, we have full input sentence as the input! We
can use any NN encoders (e.g., Bi-LSTM) to get the word
representations, and then edge representations (fusion of two words).

25

The inputs to the final
scorer now contains
the information of the

full sentence.

Ground-truth edge

Deep Biaffine Scorer

(Ducat & Manning, 2017)

• Probably nowadays the “standard” parsing scorer architecture.

• Intuition:

• For each word, learn two representations for the word being a head
and a dependent

• Biaffine function to compute scores between possible head-dip pairs

26

Progress over Years
• Move towards fine-tuning pre-trained models (e.g., XLNet, Bert)

• Results: https://nlpprogress.com/english/dependency_parsing.html

27

https://nlpprogress.com/english/dependency_parsing.html

Pre-trained Model + Multi-task

(Zhou et al. 2020)

• Jointly optimize dependency parsing, constituency parsing,
semantic role labeling

28

• Graph-based

• Local factorization

• Global inference

• Mostly CLE O(n3)

• some O(nlogn + n2) (Gabow et al. 1986)

• Transition-based

• Local normalization

• Rich output features

• Linear time O(n) with shift-reduce

• Both can reach similar results, but Graph-
based produces projective tree while
transition-based may not

29

Transition vs Graph parsing

Transition vs Graph parsing
• Deep Contextualized Word Embeddings in

Transition-based and Graph-based
Dependency Parsing — A Tale of Two
Parsers Revisited (Kulmizev et al. 2019)

• Pre-trained model allows parsers to
pack info about global sentence
structure into local feature
representations.

• They benefit transition-based parsers
more than graph-based parsers,
making the two approaches
approximately equivalent in terms of
both accuracy and error profile.

30

Models after Pre-training
• A “huge change” to the parsing models?

• Maybe not (only changing the scorers)?

• The basic parsing paradigms are almost the same.

• However, this indeed brings changes:

• Somehow blur the distinctions between graph-/transition-based methods

• Computational complexity:

• (CPU-oriented), graph O(n3) > transition O(n)

• (GPU-oriented), graph (easier to parallelize) <= transition (not so GPU-friendly?)

• What stills remains interesting is not shifted towards the data resources.

31

Data Resources

32

Data Resources

33

• There have been 6 CoNLL shared tasks related with dependency parsing

Universal

Dependency

Language

 specific

Resources: Overview
• There can be multiple ways of constructing dependency

trees, for example, for English, multiple ways of converting
from constituency trees to dependencies:

• Penn2Malt -> LTH-Convertor (for CoNLL tasks) ;; SD
(stanford) -> UD

• There are many things that need to be specified:

34

It’s hard to say which one is
“correct” or “better”, but we need
to arrive at something consistent.

https://cl.lingfil.uu.se/~nivre/research/Penn2Malt.html
https://nlp.cs.lth.se/software/treebank_converter/
https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf

Universal Dependency
• Updated every half year

• https://universaldependencies.org/

35

https://universaldependencies.org/

• 37 universal syntactic relations used in UD v2. It is a revised version of
the relations originally described in Universal Stanford Dependencies: A
cross-linguistic typology (de Marneffe et al. 2014).

36

Universal Dependency

http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf

• “Universal Dependencies (UD) is a project that is developing cross-linguistically
consistent treebank annotation for many languages, with the goal of facilitating
multilingual parser development, cross-lingual learning, and parsing research from
a language typology perspective.”

37

Universal Dependency

UD + Cross-lingual Transfer
• Dsfsd Cross-lingual transfer: Transfer from high-resource languages

to low-resource ones. (* UD provides a great test-bed for this!)

• One specific interest thing is zero-shot transfer, where no trees for

the target languages are available.

• This can be achieved with aligned multilingual word embeddings,

or ...

38

Multilingual Contextualized Representations

• Simply multilingual contextualized pre-trained encoders,
which have been shown quite effective for cross-lingual
transfer (Wu and Dredze, 2019).

39

Still an interesting question: how BERT/mBERT encodes syntax so that simply
multilingual pre-training seems to be able to “align” syntactic information?

https://aclanthology.org/D19-1077.pdf

UD is not Prefect
• There can be consistency problems (an open collaboration

project).

• Many treebanks are converted from constituency treebanks
rather than from directly dependency annotations.

• English-centric (remember it’s derived from Stanford
Dependencies).

• Are the UD choices the most reasonable ones?

• Arguments and Adjuncts (Przepiórkowski and Patejuk, 2018)

• Coordinate Structures (Kanayama et al., 2018)

40

https://aclanthology.org/C18-1324.pdf
https://aclanthology.org/W18-6009.pdf

Related Materials
• Online demo http://lindat.mff.cuni.cz/services/udpipe/

• Nice parsers: stanza, udpipe, udify

• More on UD: https://universaldependencies.org/

• EACL17 Tutorial: universaldependencies.org/eacl17tutorial/

41

http://lindat.mff.cuni.cz/services/udpipe/
https://stanfordnlp.github.io/stanza/
https://ufal.mff.cuni.cz/udpipe
https://github.com/Hyperparticle/udify
https://universaldependencies.org/
http://universaldependencies.org/eacl17tutorial/

Questions?

42

