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Recap: Syntactic Parsing
• Two types of linguistic structures:
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Constituency (aka phrase structure) tree:

Focus on the structure of the sentence 


Dependency tree:

Focus on relations between words


Dependency-tree properties:

1. No multiple edges between two words

2. Each word (except root) has only one head

3. No cycles

4. (Optional) Projective (i.e., no cross edges) 

Constituency tree: internal nodes for phrases

Dependency tree: only input words as nodes



Predicting relations between two words
• Dependency tree consists of (head, relation, dependent) triples
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Universal Dependency relations

(de Marneffe et al., 2014)
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Property of Parse Tree
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Goal for Today
• Transition-based parsing:


• Decoding algorithm: shift-reduce (Aho & Ullman, 1972)
• Modeling: feature-based, neural network, pre-trained models


• Graph-based parsing:

• Decoding algorithm: Chu-Liu-Edmonds (1965, 1967) 

• Modeling: feature-based, neural network, pre-trained models


• Data resources: labeled data for supervised prediction, or 
zero-shot prediction

• Universal dependencies

• Cross-lingual transfer learning
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Transition-based 
Parsing
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Transition-based Parsing
• Developed for analyzing programming languages (Aho, Ullman, 1972)

• Stack: data structure to build the parse tree. Initially empty. 

• Input buffer: stores tokens to be parsed. Initially contains the sentence.

• Relation set: stores the predicted arcs. Initially empty.

• Parser takes actions on the parse by a predictor called Oracle.
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First-In-Last-Out



Shift-Reduce Algorithm

MaltParser (Nivre et al. 2006)

• The parser goes through the sentence (buffer) from left to 
right


• At each time, the oracle makes a transition action based 
on the current state (a.k.a. configuration) of the stack, 
buffer, relation set:


• LeftArc: assert a left arc from the first word at the top 
of the stack to the second word (s2  s1); remove the 
dependent (s2)


• RightArc: assert a right arc from the second word at 
the top of the stack to the first word (s2  s1);  remove 
the dependent (s1)


• Shift: Shift the word from the buffer to the stack

←

→
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• The Oracle for greedily selecting the appropriate transition is 
trained by supervised learning on labeled data.


• During testing, we simply apply the Oracle’s predictions to 
get the parse tree
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Shift-Reduce Algorithm

MaltParser (Nivre et al. 2006)



Shift-Reduce (Example)
Example: Book me the morning flight
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Learning: Create Training Data
• Given a sentence and a dependency tree, simulate the shift-

reduce process to create (state, action) pairs

• Choose LeftArc if the top two words on the stack has a left 

arc in the ground-truth parse tree.

• Choose RightArc if (1) the top two words on the stack has 

a right arc in the ground-truth parse tree and (2) all the 
dependents of top first word has been assigned.


• Otherwise, choose Shift.
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(sentence, tree) pairs:



Learning: Create Training Data
• Why the RightArc’s condition is important?


• Need to make sure “flight” has assigned its dependents; 
otherwise “flight” will be reduced and its dependent 
“Houston” cannot find the arc to “flight”
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(sentence, tree) pairs:

State:

Action: Shift? or (book flight)?→



Hand-crafted Features
• Extract the features from the top two words (s1, s2) on the stack, and 

the words (b1, b2, …) on the buffer.

• Train a logistic regression model on the scores weighted by features
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Feature template:

(Uni-gram features) 

E.g., concrete features 

for Shift operator:

- Sparsity! Millions of features!



Neural Network

• Use embeddings to learn the feature of configuration (state) of 

the stack, buffer, relation, and compute the score between state 
and action by a feedforward network (Chen & Manning, 2014)
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• Words: (1) top 3 words on stack/buffer; (2) 1st, 2nd leftmost/rightmost children of 
top two stack words; (3) left/right-most grandchildren of top two stack words


• POS tags: POS tags of selected words.

• Arc labels: arc labels of selected words excluding (1) those 6 words on stack/buffer



• Instead of just using word embedding, use a neural network to 
encode the sentence first, and then take the embeddings of the top 
two words on the stack and first word on the buffer to pass through 
a feedforward network. (Kiperwasser 2016, Kulmizev et al., 2019)
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Neural Network



Shift-Reduce Parsing
• Pros:


• Process input from left to right only once — Fast O(n)

• Can make use of rich features from current configuration


• Cons:

• Decisions are local and greedy

• Cannot make use of information from right of the 

attachment point (i.e., limited look-ahead window).
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Alternative Algorithm: Beam Search

• Rather than greedily taking the argmax to predict the action 
from P(Action|State) at each time step, we can do beam 
search

• Expand K top-scoring candidates for each action 

sequence in the beams, produce K2 possible action 
sequences.


• Pruning and keep only the top K scoring action sequences.


• Recover action mistakes at early states, usually perform better 
than greedy search, but slower.
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Alternative Algorithm: Easy-first
• Non-directional easy-first parsing (Goldberg and Elhadad, 2010)

• No explicit stack/buffer, or with a stack/buffer of non-reduced tokens.

• Only two types of actions (AttachRight & AttachLeft), both create new arcs
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Graph-based Parsing
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Maximum Spanning Tree (MST)
• Define a fully connected graph G with scores over edges


• Finding the best parse  for a sentence S is equivalent to 
find a MST over G


• Assume the total score can be (first-order) edge-factored.
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Decoding Algorithm: 

Chu-Liu Edmonds (CLE, 1965)
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Greedy maximum

Contract

Rerun CLERecursive & Repack

Final parse tree



How to score each edge?
• Feature-based: with manually designed features and linear 

model


• (Early) Neural network: with atom input features and NN 
scorer


• (Recent) Pre-trained encoder: with contextualized 
representations
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Hand-crafted Features

I[pron] read[verb] the[det] book[noun] .[punct]   score(book, read)

a) p-word, p-pos = <read, verb>;  c-word, c-pos = <book, noun>; …

b) p-word, p-pos, c-word = <read, verb, book>; ….

c) p-pos, p-pos+1, c-pos-1, c-pos = <verb, det, det, noun>; …. 

→
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Neural Network 

(Kiperwasser & Goldberg, 2016)

• Remember that for parsing, we have full input sentence as the input! We 
can use any NN encoders (e.g., Bi-LSTM) to get the word 
representations, and then edge representations (fusion of two words).
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The inputs to the final 
scorer now contains 
the information of the 

full sentence.

Ground-truth edge



Deep Biaffine Scorer

(Ducat & Manning, 2017)

• Probably nowadays the “standard” parsing scorer architecture.

• Intuition:


• For each word, learn two representations for the word being a head 
and a dependent


• Biaffine function to compute scores between possible head-dip pairs
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Progress over Years
• Move towards fine-tuning pre-trained models (e.g., XLNet, Bert)

• Results: https://nlpprogress.com/english/dependency_parsing.html
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https://nlpprogress.com/english/dependency_parsing.html


Pre-trained Model + Multi-task

(Zhou et al. 2020)

• Jointly optimize dependency parsing, constituency parsing, 
semantic role labeling

28



• Graph-based

• Local factorization

• Global inference

• Mostly CLE O(n3)

• some O(nlogn + n2) (Gabow et al. 1986) 


• Transition-based

• Local normalization

• Rich output features

• Linear time O(n) with shift-reduce


• Both can reach similar results, but Graph-
based produces projective tree while 
transition-based may not

29

Transition vs Graph parsing



Transition vs Graph parsing
• Deep Contextualized Word Embeddings in 

Transition-based and Graph-based 
Dependency Parsing — A Tale of Two 
Parsers Revisited (Kulmizev et al. 2019)


• Pre-trained model allows parsers to 
pack info about global sentence 
structure into local feature 
representations.


• They benefit transition-based parsers 
more than graph-based parsers, 
making the two approaches 
approximately equivalent in terms of 
both accuracy and error profile.

30



Models after Pre-training
• A “huge change” to the parsing models?


• Maybe not (only changing the scorers)?

• The basic parsing paradigms are almost the same.


• However, this indeed brings changes:

• Somehow blur the distinctions between graph-/transition-based methods 

• Computational complexity:


• (CPU-oriented), graph O(n3) > transition O(n)

• (GPU-oriented), graph (easier to parallelize) <= transition (not so GPU-friendly?)


• What stills remains interesting is not shifted towards the data resources.

31



Data Resources
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Data Resources
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• There have been 6 CoNLL shared tasks related with dependency parsing

Universal 

Dependency

Language

 specific



Resources: Overview
• There can be multiple ways of constructing dependency 

trees, for example, for English, multiple ways of converting 
from constituency trees to dependencies: 


• Penn2Malt -> LTH-Convertor (for CoNLL tasks) ;; SD 
(stanford) -> UD


• There are many things that need to be specified:
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It’s hard to say which one is 
“correct” or “better”, but we need 
to arrive at something consistent.

https://cl.lingfil.uu.se/~nivre/research/Penn2Malt.html
https://nlp.cs.lth.se/software/treebank_converter/
https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf


Universal Dependency
• Updated every half year


• https://universaldependencies.org/
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https://universaldependencies.org/


• 37 universal syntactic relations used in UD v2. It is a revised version of 
the relations originally described in Universal Stanford Dependencies: A 
cross-linguistic typology (de Marneffe et al. 2014).
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Universal Dependency

http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf


• “Universal Dependencies (UD) is a project that is developing cross-linguistically 
consistent treebank annotation for many languages, with the goal of facilitating 
multilingual parser development, cross-lingual learning, and parsing research from 
a language typology perspective.”
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Universal Dependency



UD + Cross-lingual Transfer
• Dsfsd Cross-lingual transfer: Transfer from high-resource languages 

to low-resource ones. (* UD provides a great test-bed for this!)

• One specific interest thing is zero-shot transfer, where no trees for 

the target languages are available.

• This can be achieved with aligned multilingual word embeddings, 

or ...
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Multilingual Contextualized Representations

• Simply multilingual contextualized pre-trained encoders, 
which have been shown quite effective for cross-lingual 
transfer (Wu and Dredze, 2019).
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Still an interesting question: how BERT/mBERT encodes syntax so that simply 
multilingual pre-training seems to be able to “align” syntactic information?

https://aclanthology.org/D19-1077.pdf


UD is not Prefect
• There can be consistency problems (an open collaboration 

project).


• Many treebanks are converted from constituency treebanks 
rather than from directly dependency annotations.


• English-centric (remember it’s derived from Stanford 
Dependencies).


• Are the UD choices the most reasonable ones?

• Arguments and Adjuncts (Przepiórkowski and Patejuk, 2018)

• Coordinate Structures (Kanayama et al., 2018)
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https://aclanthology.org/C18-1324.pdf
https://aclanthology.org/W18-6009.pdf


Related Materials
• Online demo http://lindat.mff.cuni.cz/services/udpipe/


• Nice parsers: stanza, udpipe, udify


• More on UD: https://universaldependencies.org/ 


• EACL17 Tutorial: universaldependencies.org/eacl17tutorial/
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http://lindat.mff.cuni.cz/services/udpipe/
https://stanfordnlp.github.io/stanza/
https://ufal.mff.cuni.cz/udpipe
https://github.com/Hyperparticle/udify
https://universaldependencies.org/
http://universaldependencies.org/eacl17tutorial/


Questions?
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