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Syntactic Parsing

* The process of predicting syntactic representations

* Two types of linguistic structures:

S
NP VP
N TN
PN N \Ys NP det
M d | root My dog ate a  sausage
y dog ate D N PN N v D N

a sausage

Constituency (aka phrase structure) tree: Dependency tree:
Focus on the structure of the sentence Focus on relations between words



Constituency Irees

Internal nodes (or non-terminals) correspond to phrases
 S:asentence

NP (noun phrase): My dog, a sandwich, ...

VP (verb phrase): ate a sausage, ...

* PP (prepositional phrases): with a friend, in a car, ...

Nodes immediately above words are part-of-speech tags (or preterminals).

* PN: pronoun

S
e D: determiner /\
e V:verb NP N
N TN

e N: noun PN N \V NP
|

| N
My dog 4te D N
|
a

 P: preposition

sausage



Bracketing notation

o QOften convenient to represent a tree as a bracketed sequence:

* In principle, constituency tree can be an n-nary tree, however, it is
easy to convert it to a binary tree (by adding a null non-terminal ©).
By convention, we often just represent the structure as a binary tree.

NP VP
PR X V/\NP
h}y ‘jgg ale if;//\\\5i

A

sausage

(S
(NP (PN My) (N dog) )
(VP (V ate)
(NP (D a) (N sausage) )
)



Constituency is not always clear

e (Coordination:

 Example: He went to and came from the store.

Phono

e | wil

ogical reduction:

go — I'll go

« | wanttogo — | wanna go

e Ale centre — au centre e
NPg, VPg,
POTT o A PSSR il Y
DT NN PP rises to . ..
| | =t e W
The velocity IN NPy

[ et T
of the seismic waves

N

La velocité des ondes sismiques




Dependency Irees

Nodes are words (along with part-of-speech tags)

Directed arcs encode syntactic dependencies between words

Labels are types of relations

root: root of the tree, usua
POSS: pOSSessive

dobj: direct object

nsub: (noun) subiect

det; determiner

netween words:

ly points to a verb

et

root My dog ate a  sausage
PN N V D N



Dependency parsing

Recover shallow semantics

Shallow semantic information can be (approximately) derived from
syntactic information

* Subjects (nsubj) are often agents: initiators / doers of an action

* Direct objects (dobj) are often patients: affected entities

But not always true. Even tfor agents and patients, consider:

* Mary is baking a cake in the oven

* A cake is baking in the oven

In general, it is not trivial even for the most shallow forms of semantics

* e.g., prepositions: In can encode direction, position, temporal
information, ...



Constituency <> Dependency

o (Constituency trees can (potentially) = dependency trees

/ﬁp\ \ /VE\ NP: dog VP: ate
PN \\N 'Vv. . NP
M’y dj)g LD/\N Lexicalized non-terminal
= w/ head word
a  sandwich

« Dependency trees can (potentially) — constituency trees

r=-=-=======7=7=7=7=7=== |

E S |

e e :
J

R R :

' PN N |V ' root 'y My dog' barked !

o | ¥ l |

I | ’ ' ‘ ) l| PN N : V I

| | My dog barked ! R et |

|



Context Free Grammar (CFQG)
& Probabilistic CFG



Context-free grammars (CFG)

 (Context-free grammars (CFG): a formalism for parsing.

Grammar (CFQG)

ROOT — S NP — NP PP

S — NP VP VP — VBP NP
NP — DT NN VP — VBP NP PP
NP — NN NNS PP — IN NP

* QOther (non-CF) grammar formalism: LFG, HPSG, TAG, CCQG, ...

| exicon

NN — interest
NNS — raises
VBP — interest
VBP — raises

10



CFG tor Syntactic Parsing

g Grammar (CFG) Lexicon
/\ S—NPVW N — girl
NP VP N — telescope
VP —V N — sandwich
VP — VP PP V — saw
V — ate
NP — NP PP B, with
NP —- DN .
P—in
NP — PN
D—a

PP — P NP D —the

11



CFG tor Syntactic Parsing

S

T

NP VP

|
PN

Grammar (CFQG)

S—>NPVP

VP -V
VP - V NP
VP — VP PP

NP — NP PP
NP —- DN
NP — PN

PP — P NP

| exicon

N — gil’|
N — telescope
N — sandwich

PN — |

V — saw
V — ate
P — with
P—in
D—a
D — the
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CFG tor Syntactic Parsing

S

T

NP VP

|
PN

|
I

Grammar (CFQG)

S — NP VP

VP -V
VP — V NP
VP — VP PP

NP — NP PP
NP —-DN
NP — PN

PP —- P NP

| exicon

N — girI
N — telescope
N — sandwich

PN — |

V — saw
V — ate
P — with
P—in
D—a
D — the

13



CFG tor Syntactic Parsing

g Grammar (CFG)
/\ S—-NPVP
NP VP
| /\ VP -V
} VP — VP PP
NP — NP PP
NP —-DN
NP — PN

PP — P NP

| exicon

N — girl

N — telescope
N — sandwich
PN — |

V — saw

V — ate
P — with
P—in
D—a
D — the

14



CFG tor Syntactic Parsing

g Grammar (CFG)
Py S — NP VP
NP VP
T VP -V
N N VP — V NP
b VP — VP PP
Saw
NP — NP PP
NP — D N
NP — PN

PP — P NP

| exicon

N — girl

N — telescope
N — sandwich
PN — |

V — saw

V — ate
P — with
P —in
D—a
D — the
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CFG tor Syntactic Parsing

| /\
PN
I | /\
SaWw

Grammar (CFQG)

S — NP VP

VP -V
VP — V NP
VP — VP PP

NP — NP PP

NP —- DN
NP — PN

PP — P NP

| exicon

N — girl

N — telescope
N — sandwich
PN — |

V — saw

V — ate

P — with
P—in

D—oa

D — the
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CFG tor Syntactic Parsing

S

NP VP

| /\
PN

| V NP

| | /\

W NP PP
N
D N

Grammar (CFQG)

S— NPVP
VP -V

VP —- V NP
VP — VP PP

NP — NP PP

NP —- DN

NP — PN

PP —- P NP

| exicon

N — girl

N — telescope
N — sandwich
PN — |

V — saw

V — ate

P — with
P—in

D—oa

D — the
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CFG tor Syntactic Parsing

S

NP VP

| /\
PN

| V NP

I | /\

W NP PP
N
D N

Grammar (CFQG)

S — NP VP
VP -V

VP —- V NP
VP — VP PP

NP — NP PP

| exicon

N — girl

NP —- DN

NP — PN

PP — P NP

N — telescope
N — sandwich
PN — |

V — saw

V — ate

P — with
P—in

D—a

D — the
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CFG tor Syntactic Parsing

S
NP VP
| /\
PN
| V NP
| | /\
W NP PP
N
D N
| |
a girl

Grammar (CFQG)

S — NP VP

VP -V
VP - V NP
VP — VP PP

NP — NP PP
NP —-DN
NP — PN

PP —- P NP

| exicon

N — girl

N — telescope
N — sandwich
PN — |

V — saw

V — ate

P — with
P—in

D—a

D — the

19



CFG tfor Syntactic Parsing

g Grammar (CFG) Lexicon
A Foe U O |5 S — NP VP N — girl
NP = 8 N — telescope
| /\ ‘ol e\ VP —V N — sandwich
P|N \% B VP — V NP PN —s |
o NP or NP — NP PP Vot
N /\ - P — with
D N P NP NP —- DN 5 _,in
o L NP — PN
a gl with D N D—a

a telescope

20



Probabilistic context-free grammars (PCFQG)
. CFG: A4-tupe(N,X, R, S)

e V: a set of non-terminal symbols

e X a set of terminal symbols (disjoint from V)

S a designated start symbol and a member of N

+ R:asetof rules, each of the form A — s} where A is a non-
__terminal, s is a string of symbols, A € N,s € (¥ U N)x
| S Al AeN

' 3 Without loss of generality, only consider
1A= BC} AeN,B,CeNUX binary branching; Chomsky Normal Form

I A— o € X

* PCFG adds a top-down production probability per rule.
. Model the probability of each rule: P(A — s)
VA—-seR:0<PA—s)<1
VAEN: )  PA-s)=1

s where A—s€R 21



Now we can score
a tree as a product
of probabillities
corresponding to
the used rules!

PCFG (Example)

S— NPVP

VP -V

VP —- V NP
VP — VP PP

NP — NP PP

NP —- DN
NP — PN

PP —- P NP

0.2
0.4

0.4

0.3
0.5
0.2

(NP a girl) (VP ate a sandwich)

(V ate) (NP a sandwich)

(VP saw a girl) (PP with a
telescope)

(NP a girl) (PP with a sandwich)
(D a) (N sandwich)

(P with) (NP a sandwich)

N — girl
N —
telescope
N —
sandwich

PN —/
V — saw
V — ate
P — with
P—in
D—a
D — the

0.2
0.7

0.1

1.0
0.5
0.5
0.6
0.4
0.3
0.7
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S

T

NP

PN =1.0"*

VP

S —- NP VP

VP -V

VP — V NP
VP — VP PP

NP — NP PP

NP —- DN
NP — PN

PP — P NP

PCFG (Example)

1.0

0.2
0.4

0.4

0.3
0.5
0.2

1.0

N — girl
N —
telescope
N —
sandwich

PN —/
V — saw
V — ate
P — with
P —in
D—a
D — the

0.2
0.7

0.1

1.0
0.5
0.5
0.6
0.4
0.3
0.7

23



PCFG (Example)

S
N S—>NPVP 1.0 N —girl
NP VP ;\' -
0.2 VP -V 0.2 I\T escope
N
PN VP >VNP 04 o dwich
VP -VPPP 04 PN-—I
V — saw

NP —>NPPP 03 V—ate

NP—-DN 05 P—wih

NP — PN 02 P—in
D—a

PPPNP 1.0 D—the
PM=10*02"*

0.2
0.7

0.1

1.0
0.5
0.5
0.6
0.4
0.3
0.7

24



PCFG (Example)

S
N S—>NPVP 1.0 N —girl
NP VP N
0.2 VP -V 0.2 Iescope
PN -
T VP ->VPPP 04 PN—I
V — saw

NP —>NPPP 03 V—ate

NP—-DN 05 P—wih

NP — PN 02 P—in
D—a

PP -PNP 1.0 D-—the
PM=1.0*02*1.0*

0.2
0.7

0.1

1.0
0.5
0.5
0.6
0.4
0.3
0.7

25



PCFG (Example)

/\1.0 S—>NPVP 1.0 N —girl
N —

NP VP o]
10.2 AOA VP -V 0.2 I\T escope
PN -
1 VP -VPPP 04 PN-—/
V — saw

NP —>NPPP 03 V—ate

NP—-DN 05 P—wih

NP — PN 02 P—in
D—a

PP >PNP 1.0 D—the
PM=10*02*1.0%0.4"*

0.2
0.7

0.1

1.0
0.5
0.5
0.6
0.4
0.3
0.7
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PCFG (Example)

S

/\1.0 S>NPVP 1.0 N girl
N —

NP VP o
10.2 N VP -V 0.2 [\T escope
PN -
10 V NP VP —=VNP 04 sangwich
I | 0.5 VP -VPPP 04 PN-—/
Saw V — saw

NP —>NPPP 03 V—ate

NP—-DN 05 P—wih

NP — PN 02 P—in
D—a

PP >PNP 1.0 D—the
PM=10*02*1.0*0.4%05"*

0.2
0.7

0.1

1.0
0.5
0.5
0.6
0.4
0.3
0.7
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PCFG (Example)

S
ND VP ;\‘ -
| 0.2 0.4 VP — V 0o telescope
PN Tl VP SVNP 04 N
10 V NP - ““ sandwich
1 |05 08 VP ->VPPP 04 PN—J
NP PP V — saw

NP —>NPPP 03 V—ate

NP—-DN 05 P—wih

NP — PN 02 P—in
D—a

PP -PNP 1.0 D-—the
PM=10%02*1.0*0.4*05*0.3"*

0.2
0.7

0.1

1.0
0.5
0.5
0.6
0.4
0.3
0.7

28



PCFG (Example)

S

PN S—>NPVWP 1.0 N girl
N —

NP VP
|10.2 N VP — V 0o telescope
PN WV SVNP 04 N7
1.0 \% NP 7 sandwich
1 105 0% VP >VPPP 04 PN—/
saw NP 05 PP 0 V — saw
0.3 102 06 NP—->DN 05 P—with
A gl D/\ NP P—i
—PN 0.2 in
0.3 0.7 Do a

a telescope
PP—-PNP 1.0 D-—the

P(T)=1.0"02*1.0*04*0.5*0.370.5*0.370.2"1.0*0.6*0.5*0.3* 0.7 = 2.26e-5

0.2
0.7

0.1

1.0
0.5
0.5
0.6
0.4
0.3
0.7

29



PCFG Supervised
| earning & Decoding



PCFG Supervised Learning

A treebank: a collection of sentences annotated with constituency trees

. Penn Treebank: (X, T) pairs

S S
g \'.l) /;\ A
~ NP VP :
/\ | P NP VP
NP VP : ' PN ™~
P PN v NP PP ‘ AY \/}\) lll /’\
PN Ny NP Pu 2 ™ S — | VP C VP
NP PP P NP saw - B e M
| | | N N, TN P NP PP koalas
My dog ate D N b b on NP PP < N /\, | |
| | the Dblock jn D N o~ - P D N I \\‘P \% NP and A%
: " [ ]
a gu h D N eat N bark
\ \
telescor l(-n‘l\’(rs

PCFG: a generative model, maximizing the joint probability of a
sentence given a tree.

e |f we constraint the search space to be all valid trees that can
generate the sentence, this becomes:

max P(X,T) = max P(X|T)P(T) = max  P(T)
(S

31



PCFG Supervised Learning

Estimate probability of each rule by maximum likelihood estimation:

P(T)= » P(A—s), TeGEN(X)
A—s€ER

Count(A — 8) # times the rule was used in the data

P(A — s) =
COunt(A) # times the nonterminal was used in the data

Smoothing is helpful (esp. for rules that produce one word)

It we don’t have training data, use EM algorithm to estimate the probability

32



HMM vs PCFG

MM: Linear Markov Chain

X: NP — N — N’ — N — sink
| | | |
O: the big brown box
NP
PCFG: tree N
the N
big N’
brown NY

box

33



PCFG Decoding

e Brute force solution: enumerate all possible binary trees, score them,

find the tree with maximum score

e watches 3 modal  tran

34



PCFG Decoding

Brute force solution: enumerate all possible binary trees, score them,
find the tree with maximum score

For a sentence of n words, there are (n-1)! possible binary trees. Each
word may have more than 1 possible POS tags

How to decode efficiently?

e watcnes 3 modal  tran

35



PCFG Decoding: CYK Algorithm

Binary Rule -log prob
Bottom-up Dynamic Programming S’ —Pron Verb 4
S’ =Pron VP
S’ ->NP VP
NP —NP Verb
NP—Det Noun
NP—Det NP
NP—Noun Noun
VP—Noun NP
VP—-Verb NP
VP—-VP NP

Remember to store back-pointer!

D DO DD DO DN

Binary rule

A— BC

Lexical rule g
(Unary rule) %

A—oa,a€eX

e watches 3 mooel  tran



PCFG Decoding: CYK Algorithm

e watches 3 mooel  tran



PCFG CYK Decoding

A treebank: a collection of sentences annotated with constituency trees

e Penn Treebank

S b /\
/\ N - '
| NP VP
NP VP PN S I /’\
P | N
PN N v X% , r -
My dog gate D N . e N | |
‘ | ]‘) 17 P NP A% NP and Vv
||||| PN
" | P | | |
AR 1 h D N cat N barks
\ \ |
telescor leaves

Estimate probability of each rule by maximum likelihood estimation:

Count(A — S) # times the rule was used in the data

P(A — s) =

CO’ant(A) # times the nonterminal was used in the data

Smoothing is helpful (esp. for rules that produce one word)

38



PCFG Decoding: CYK Algorithm

* The score (or unnormalized probability) of a constituent
with a non-terminal is often called inside probability

 Computed by dynamic programming

Slabel(iaja A) — I?lBa}é’ P(A — BC) X SIabel(ia ka B) X Slabel(k -+ 17j7 C)



Semiring Conversion

* The score (or unnormalized probability) of a constituent with
a non-terminal is often called inside probabillity

 Computed by dynamic programming

 Numerically unstable

Slabel(iaja A) — kI:nBa}é' P(A — BC) X Slabel(ia ka B) X Slabel(k -+ 17j7 C)

 Define the minimum cost score, and rewrite the scores
Slabel (%, J, A) = —10g s1abel (4, 1, A)

S{abel(ivja A) — knllgl% (_ lOgP(A — BC) T Siabel(ia ka B) T S{abel(k T 17j7 C))



Semiring Parsing

“Add’ “Multiply” ®

Slabel(ia j7 A) :gn]_?’}é

weights ® ® © Q)
total prob [0, 1] + X 0 1
max prob [0, 1] max X 0 1
min -logp [0, o] min + 0o 0
log prob [-o0, O] logsumexp + -00 0
recognizer T/F or and F T
Semiring is an algebraic structure in ring theory: https://en.wikipedia.org/wiki/Semiring



https://en.wikipedia.org/wiki/Semiring

36
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18

Random PCFG Right Branching

Great News: It works (better than random)



40

30

20

10

Random PCFG Right Branching

Bad News: It is even worse than right branching. Why?



Supervised Parsing:
Span-based Neural Models



Span-Based Parsing

S
T

NP VP

I - \
She enjoys ?

VP
/\
playing NIP
tennis

She enjoys playing  tennis

Stern et. al 2016. A Minimal Span-Based Neural Constituency Parser

45



Span-Based Parsing

Slabel(ia ja €)

Scoring a span from the i-th word to j-th word being the label of £

Slabel (17 37 VP)
VP

1

{ She [enjoys playing tennis] . }
Word index: O 1 2 3 4

46



Span-Based Parsing

] ] ] ] ]
N1=1=[1=]=1
1 ] 1 1 ]

[ She (enjoys playing tennis} . J




Span-Based Parsing

]

ﬁ

I ]
{ She [enjoys playing tennis] . J




Span-Based Parsing

— — —

I I I I
{ She [enjoys playing tennisj . }




Span-Based Parsing

Pronoun to the left
Verb at the start

|
I I 1 I
[ She [enjoys playing  tennis ]

50



Span-Based Parsing

Pronoun to the left Period to the right

Verb at the start Noun and verbs to the left
1 1
] ] ] | 1

{ She [enjoys playing tennisj . J

51



Span-Based Parsing

— — D —

I I I ! I
[ She [enjoys playing tennisj . J




Span-Based Parsing

VP
1
’s
- O+

D — o e

| | | I I
[ She [enjoys playing tennisj . }




Span-Based Parsing

1 1 1 1 1

She enjoys  playing  tennis



Span-Based Parsing

1 1 I 1 1

She enjoys  playing  tennis

55



Span-Based Parsing

0

1

[{She enjoys playingj tennis . ]

VP

1

[ She [enjoys playing tennis} . J




Training: Margin Loss

* Find the best tree using the current model

T — argmax (Stree(7)] -
T

* Margin loss:

max (O. 1 — Stree(T™) + Stree(T))

57



Decoding: CYK

e Same as counting-based PCFG

e Use the learned scores for possible spans in the following chart

She enjoys playing tennis
0 1 2 3 4 5

58



Improves over non-neural methods

Grammar-Based

[Carreras et al, 08] 91.0

_92.6

902 904 906 908 91 912 914 916 918 92 922 924 926 928

LSTM-Based
[Stern et al, 17]

F1 (English, dev)

59



SoTA Self-attention-based Parser

* Use the Transformer encoder 4

Output -(VP(VBD fled) (NP(DT the) (NN market))..

instead of Bi-LSTM '
* Split the word hidden vector Decoder 6@6
from Transformer mto two half

-

vectors h; = [hz, h, ;] f

» Replace the forward and Encocer
backward hidden vectors of

-

Bi-LSTM by the new vectors

[nput

Kitaev et al. 2018. Constituency Parsing with a Self-Attentive Encoder



Historical Trends on Penn ITreebank

95,1

94,7

942

93,8

93,6

91,8

[8T, UIS[) @ Ase)]
[£T, "1 38 pald]

[£T, Bueyd g ni]

Multi-Modal / Additional Data

Single Parser

61



Unsupervised Parsing
(Grammar Induction)



Grammar Induction (Unsupervised Parsing)

Learning a set of (probabilistic) grammar rules

63



Typical grammar induction methods

unsupervised constituency and dependency parsing

64



Explosion of ambiguity

%\. % !Ih W Ao AR BAD I
watching a model train watching a model train
' ' . m

B F» BE BN M

EH K AP BNE

‘ NPﬂ'lONHL SCHEDULIMG CONFUCT

| CHAMPONSHIPS CANCELED

= ‘ f "I-. NSCc 2015 ' _f"‘: mH A RE BND M
=== ? o=
; _‘ - | m j ;_"‘:;7'-;"::_“3

P A A e T AR e e APt

| ————

Ve = == ) %

By K AP BN B




S[CHASING]

/\
R R NP[DOG] VP[CHASING]
" " /\ /\

DT[THE] NN|[DOG] VBZ[1S] VP[CHASING]
| | |

the dog is chasing the cat

Mystery: humans learn to parse
without learning to parse (from labels)



S[CHASING]

/\
R NP[DOG] VP[CHASING]
" /\ /\

: DT[THE] NN[DOG] VBZ[1S] VP[CHASING]
| | |

the dog is chasing the cat

Grammar Induction



Neural PCFGs

* Neural parameterization for PCFGs

exp(uy, f(wr))
> wes exp(u,, f(wr))

Tr_yw = NEURALNET(Wp) =

shared neural net

7TT—>wO<eXp( u, f( wr ))
— ——

output emb. input emb.

e same training method

* Where’s the magic?



Neural L-PCFGs

* You can further improve Neural PCFGs by adding head

annotations S[CHASING]
NP[MASING]
DT[TH{]N\N[DOG] VBZ@ASING]
tl|le d(‘)g i|s chasing the cat
(1) 5— A, AeN
5— A, AeN @A:a:%B:a:C[ﬁ], AeN,B,CeNUP
A= BC, AeN,B,CeNUP (2r) Alo] = B[BICla], A€N,B,CENUP
T — «, TeP @T:a:_)a’ Tep




Results

| Compound PCFG [ DMV [ Neural L-PCFGs

60

45
ight branching
30
15
0
DAS UAS F1

70




S[CHASING]

/—\
- NP[DOG] VP[CHASING]
" /\ /\

DT[THE] NN[DOG] VBZ[is] VP[CHASING]
| | |

the dog is chasing the cat

Key to the mystery: visual prior?



Visual Prior Grammar Induction

* Visual grounded neural syntax acquisition

Structure and Representation
A cat is on the ground Inference

Caption (Score-Sample-Combine)

Image Encoder

o °®
®
°®
°®

T c(li) > acat
AN TN (7)
A s CQA : the ground
PN cg’) : on the ground

the ground

Constituency Parse Tree Embeddings of Constituents

p@ ——>
Image Embedding

@
i C
Cgl) 3

®
[ ) %)
»®

Visual-Semantic Embeddings

Step #5:

Step #4:

Step #3:

Step #2:

Step #1:

((a cat) (is (on (the ground))))

‘‘‘‘‘‘‘
~~~~~
,,,,,,

-

(acat) (is (on (the ground)))

0.35 0.65

e - S
N - ~.
e ~ - =<
- ~

gaé:':lt} § (on (the ground))

0.25 |0.15 0.6

(acat) is on (the ground)

0.25 |0.15 |0.15 .43

Sy

gaéét) is

N,
SRS
s
N

2\, 7,
20N, 20N,

~ 7 /

e N/ ™

s on the ground

04 0.1 /010103
,/‘\\//‘\\ ’,/"\\ ,/I‘\ /"\

a cat is on the ground



Visual Prior Grammar Induction

* Visual grounded neural syntax —
acquisition SUND. 381420 210 04200

1, sws, CME 77.2 17.0 53.4 182 49.7+5.9
2,sws, CME 80.8 19.1 52.3 17.1 51.6+0.6
+HI

e Similar results even if the dimension s %8 55 68 55 sexos

1,sws,eme 74.0 35.2 62.0 24.2 51.8+£04

Of embedd|ngs get Shrunk -to 1 OI’ 2 i;ﬁ?:::;ext 73.8 30.2 63.7 21.9 51.3+0.1

- Shi2019 78.8 244 65.6 22.0 54.4+0.3
S e Shi2019* 77.3 239 643 219 53.3+0.1
e l,sws,cme  76.6 21.9 68.7 20.6 53.5Et14

2,sws,cMe  77.5 22.8 66.3 19.3 53.6+0.2

+HI+FastText-IN

Shi2019* 78.3 26.6 67.5 22.1 54.9+0.1
1, sm, cvx 79.6 29.0 38.3 23.5 49.74+0.2
1, SMHI, CMX 77.6 45.0 72.3 24.3 57.5+0.1

* embedding
tags

1,sm, cME 80.0 26.9 62.2 23.2 54.3+0.2
1,smur,cme  76.5 20.5 63.6 22.7 52.24+0.3
1,sws, CME 777 26.3 72.5 22.0 55.5+0.1
2,sws, CME 78.5 26.3 69.5 21.1 55.2+0.1

e concretene

@ Noun Verb Adp @ Ad @ Other



Visual Prior Grammar Induction

» Recommend readings
® Visually Grounded Compound PCFGs.

® Dependency Induction Through the Lens of Visual
Perception



Questions?



