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Syntactic Parsing
• The process of predicting syntactic representations


• Two types of linguistic structures:
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Constituency (aka phrase structure) tree:

Focus on the structure of the sentence 


Dependency tree:

Focus on relations between words




Constituency Trees
• Internal nodes (or non-terminals) correspond to phrases


• S: a sentence

• NP (noun phrase): My dog, a sandwich, …

• VP (verb phrase): ate a sausage, …

• PP (prepositional phrases): with a friend, in a car, …


• Nodes immediately above words are part-of-speech tags (or preterminals).

• PN: pronoun

• D: determiner

• V: verb

• N: noun

• P: preposition
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Bracketing notation
• Often convenient to represent a tree as a bracketed sequence:

• In principle, constituency tree can be an n-nary tree, however, it is 

easy to convert it to a binary tree (by adding a null non-terminal ). 
By convention, we often just represent the structure as a binary tree.

Ø
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Constituency is not always clear
• Coordination:


• Example: He went to and came from the store.


• Phonological reduction:

• I will go  I’ll go

• I want to go  I wanna go

• A le centre  au centre

→
→

→
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Dependency Trees
• Nodes are words (along with part-of-speech tags)

• Directed arcs encode syntactic dependencies between words

• Labels are types of relations between words:


• root: root of the tree, usually points to a verb

• poss: possessive

• dobj: direct object

• nsub: (noun) subject

• det: determiner
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Dependency parsing
• Recover shallow semantics

• Shallow semantic information can be (approximately) derived from 

syntactic information

• Subjects (nsubj) are often agents: initiators / doers of an action

• Direct objects (dobj) are often patients: affected entities


• But not always true. Even for agents and patients, consider:

• Mary is baking a cake in the oven

• A cake is baking in the oven


• In general, it is not trivial even for the most shallow forms of semantics

• e.g., prepositions: in can encode direction, position, temporal 

information, …
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Constituency  Dependency ↔
• Constituency trees can (potentially)  dependency trees→
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NP: dog VP: ate

Lexicalized non-terminal 

w/ head word

• Dependency trees can (potentially)  constituency trees→



Context Free Grammar (CFG) 
& Probabilistic CFG
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Context-free grammars (CFG)
• Context-free grammars (CFG): a formalism for parsing.
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• Other (non-CF) grammar formalism: LFG, HPSG, TAG, CCG, …



CFG for Syntactic Parsing
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CFG for Syntactic Parsing
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CFG for Syntactic Parsing
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CFG for Syntactic Parsing
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CFG for Syntactic Parsing
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CFG for Syntactic Parsing

16



CFG for Syntactic Parsing
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CFG for Syntactic Parsing
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CFG for Syntactic Parsing
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CFG for Syntactic Parsing
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• CFG: A 4-tupe :

• : a set of non-terminal symbols

• : a set of terminal symbols (disjoint from )

• : a designated start symbol and a member of 

• : a set of rules, each of the form , where  is a non-

terminal,  is a string of symbols, 

Probabilistic context-free grammars (PCFG)
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• PCFG adds a top-down production probability per rule.

• Model the probability of each rule: 

Without loss of generality, only consider  
binary branching; Chomsky Normal Form



PCFG (Example)
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PCFG (Example)
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PCFG (Example)
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PCFG (Example)
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PCFG (Example)
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PCFG (Example)
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PCFG (Example)
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PCFG (Example)



PCFG Supervised 
Learning & Decoding
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PCFG Supervised Learning
• A treebank: a collection of sentences annotated with constituency trees


• Penn Treebank:   pairs

• PCFG: a generative model, maximizing the joint probability of a 
sentence given a tree.

• If we constraint the search space to be all valid trees that can 

generate the sentence, this becomes:
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PCFG Supervised Learning
• Estimate probability of each rule by maximum likelihood estimation:

# times the rule was used in the data

# times the nonterminal was used in the data

• Smoothing is helpful (esp. for rules that produce one word)

• If we don’t have training data, use EM algorithm to estimate the probability



HMM vs PCFG
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HMM: Linear Markov Chain

PCFG: tree
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PCFG Decoding
• Brute force solution: enumerate all possible binary trees, score them, 

find the tree with maximum score

He   watches    a       model   train
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PCFG Decoding

He   watches    a       model   train

• Brute force solution: enumerate all possible binary trees, score them, 
find the tree with maximum score


• For a sentence of n words, there are (n-1)! possible binary trees. Each 
word may have more than 1 possible POS tags


• How to decode efficiently?

Verb

Noun

Verb

Noun

Verb

Noun



He   watches    a       model   train

Pron 2 Verb 5

Noun 6 DET 1 Verb 5


Noun 6
Verb 7

Noun 6

∞

∞

S’ 11 NP 8 NP 16

S’ 19 

NP 19

VP 26 

S’ 30

Remember to store back-pointer!

Binary Rule -log prob

S’ →Pron Verb 4

S’ →Pron VP 2

S’ →NP VP 2

NP →NP Verb 5

NP→Det Noun 2

NP→Det NP 2

NP→Noun Noun 4

VP→Noun NP 5

VP→Verb NP 2

VP→VP NP 2

PCFG Decoding: CYK Algorithm

Lexical rule

(Unary rule)

Binary rule VP 15

NP 19

Bottom-up Dynamic Programming



Pron 2 Verb 5

Noun 6 DET 1 Verb 5


Noun 6
Verb 7

Noun 6

S’ 11 NP 8 NP 16

VP 15

NP 19

∞

∞ NP 19

S’ 19 VP 26 

S’ 30

Use the back-pointer to build the 
whole tree by branching from root. 

PCFG Decoding: CYK Algorithm

He   watches    a       model   train
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PCFG CYK Decoding
• A treebank: a collection of sentences annotated with constituency trees


• Penn Treebank

• Estimate probability of each rule by maximum likelihood estimation:

# times the rule was used in the data

# times the nonterminal was used in the data

• Smoothing is helpful (esp. for rules that produce one word)



• The score (or unnormalized probability) of a constituent 
with a non-terminal is often called inside probability


• Computed by dynamic programming

PCFG Decoding: CYK Algorithm



• The score (or unnormalized probability) of a constituent with 
a non-terminal is often called inside probability


• Computed by dynamic programming


• Numerically unstable


• Define the minimum cost score, and rewrite the scores

Semiring Conversion



weights ⊕ ⊗ ⓪ ①

total prob [0, 1] +	 x 0 1

max prob [0, 1] max x 0 1

min -logp [0, ∞] min + ∞ 0

log prob [-∞, 0] logsumexp + -∞ 0

recognizer T/F or and F T

Semiring Parsing
“Add” “Multiply”

Semiring is an algebraic structure in ring theory: https://en.wikipedia.org/wiki/Semiring

https://en.wikipedia.org/wiki/Semiring
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Random PCFG Right Branching

Great News: It works (better than random)
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Random PCFG Right Branching

Bad News: It is even worse than right branching. Why?



Supervised Parsing:

Span-based Neural Models

44



Span-Based Parsing
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Stern et. al 2016. A Minimal Span-Based Neural Constituency Parser



Span-Based Parsing
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Scoring a span from the i-th word to j-th word being the label of 

Word index: 0             1           2              3            4



Span-Based Parsing
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Span-Based Parsing
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Span-Based Parsing
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Span-Based Parsing
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Span-Based Parsing
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Span-Based Parsing
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Span-Based Parsing
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Span-Based Parsing

54



Span-Based Parsing
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Span-Based Parsing
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Training: Margin Loss
• Find the best tree using the current model


• Margin loss:
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Decoding: CYK
• Same as counting-based PCFG


• Use the learned scores for possible spans in the following chart
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Improves over non-neural methods
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SoTA Self-attention-based Parser

• Use the Transformer encoder 
instead of Bi-LSTM

• Split the word hidden vector 

from Transformer into two half 
vectors 


• Replace the forward and 
backward hidden vectors of 
Bi-LSTM by the new vectors
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Kitaev et al. 2018. Constituency Parsing with a Self-Attentive Encoder



Historical Trends on Penn Treebank
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Unsupervised Parsing

(Grammar Induction)
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Grammar Induction (Unsupervised Parsing)
Learning a set of (probabilistic) grammar rules
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Typical grammar induction methods
unsupervised constituency and dependency parsing
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Explosion of ambiguity



Mystery: humans learn to parse 
without learning to parse (from labels)



Grammar Induction



Neural PCFGs

• Neural parameterization for PCFGs


• same training method


• Where’s the magic?



Neural L-PCFGs

• You can further improve Neural PCFGs by adding head 
annotations



Results
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Compound PCFG DMV Neural L-PCFGs
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right branching



Key to the mystery: visual prior?



Visual Prior Grammar Induction

• Visual grounded neural syntax acquisition



Visual Prior Grammar Induction

• Visual grounded neural syntax 
acquisition


• Similar results even if the dimension 
of embeddings get shrunk to 1 or 2. 


• embeddings mainly capture POS 
tags


• concreteness?



Visual Prior Grammar Induction

• Recommend readings


• Visually Grounded Compound PCFGs. 

• Dependency Induction Through the Lens of Visual 
Perception



Questions?
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