CS769 Advanced NLP Sequence Labeling II

Junjie Hu

Slides adapted from Yulia <u>https://junjiehu.github.io/cs769-spring22/</u>

Recap: HMM

- Generative model: Learn a joint probability of $p(x_1 \cdots x_n, y_1 \cdots y_{n+1})$
- Use the 1st order Markov assumption

$$p(x_1...x_n, y_1...y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1}) e(x_i|y_i)$$

- $e(x_i|y_i)$: Probability of state y_i generating x_i
- $q(y_{i+1}|y_i)$: Probability of state y_i transitioning to y_{i+1}
- $q(\mathrm{STOP}|y_n)$: Probability of y_n being the last state

Graphical Model Representation of HMM

where $y_0 = \text{START}$ and we call q(y'|y) the transition distribution and e(x|y) the emission (or observation) distribution.

Recap: Naive Bayes & HMMs

• Naive Bayes (for text classification):

$$P(X, y) = P(X|y)P(y) = \left(\prod_{x_i} P(x_i|y)\right)P(y)$$

• Hidden Markov Models (for sequence labeling):

$$P(X,Y) = q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1})e(x_i|y_i)$$
$$= \left(q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1}) \left(\prod_{i=1}^n e(x_i|y_i)\right)\right)$$
$$= P(Y) \left(\prod_{i=1}^n P(x_i|y_i)\right)$$

HMMs \approx sequence version of Naive Bayes! Both are generative models.

Generative v.s. Discriminative

- Generative Models:
 - Joint probability: P(X,Y)
 - Make prediction by $rgmax_Y P(X,Y)$
 - Can generate new samples (X,Y)
 - Examples: HMMs, Naive Bayes
- Discriminative Models:
 - Conditional probability: P(Y|X)
 - Can directly predict $rgmax_Y P(Y|X)$
 - Examples: Conditional Random Fields, Logistic Regression
- Both trained via Maximum Likelihood Estimation

Conditional Random Fields (Sequential Version of Logistic Regression)

Recap: Logistic Regression
(Log Linear Models)
Text classification:
$$X = \{x_1 \cdots, x_n\}, y \in \{1 \cdots C\}$$

 $F(X, y = c)$ Scoring function
 $P(y = c|X) = \frac{\exp(w_c^T f(X) + b_c)}{\sum_k \exp(w_k^T f(X) + b_k)}, \quad w_c, f(X) \in \mathbb{R}^d$
 $Z(X)$ Normalization constant
or partition function

• "Log-linear" assumption:

٠

• The features of the input is "log-linear" to the output

$$\log P(y = c | X) = F(y = c, X) - \log Z(X)$$

• Very flexible to include hand-crafted features (or learned features by neural networks)

Linear chain Conditional Random Fields ("Log-Linear" 1st order Sequential Model)

• Sequence labeling $X = \{x_1 \cdots x_n\}, Y = \{y_1 \cdots y_n, \text{STOP}\}$:

$$\begin{split} P(Y|X) &= \frac{1}{Z(X)} \exp\left(\sum_{j=1}^{d} \sum_{i=1}^{n} \lambda_{j} q_{j}(y_{i-1}, y_{i}, X) + \sum_{j=1}^{d} \sum_{i=1}^{n} \mu_{j} g_{j}(y_{i}, X)\right) \\ Z(X) &= \sum_{Y} \exp(F(Y, X)) & \text{d}_{1} \text{ features } \\ \text{scoring transitions } \\ \text{scoring transitions } \\ \text{state w/ input sequence} \\ F(Y, X) &= w^{T} f(Y, X) = \sum_{j=1}^{d} \sum_{i=1}^{n} w_{j} f_{j}(y_{i-1}, y_{i}, X, i), \quad w, f(Y, X) \in \mathbb{R}^{d} \\ f_{j}(y_{i-1}, y_{i}, X, i) &= q_{j}(y_{i-1}, y_{i}, X) + g_{j}(y_{i}, X) \\ w_{j} &= \lambda_{j} + \mu_{j} \end{split}$$

ICML "test-of-time" paper: Lafferty et al. 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data 8

Compare HMM and linear chain CRF

• Directed graphical model vs undirected graphical model

An open circle indicates that the variable is not generated by the model.

CRF: Learning

• Learning: maximize the log-likelihood over the training data

$$\mathcal{L}(w) = \sum_{(X,Y)\sim\mathcal{D}_{\text{train}}} \log P(Y|X)$$

= $\sum_{(X,Y)\sim\mathcal{D}_{\text{train}}} w^{\top} f(Y,X) - \log Z(X)$
 $w^{*} = \arg \max_{w} \mathcal{L}(w)$
Sum over all possible outputs Y
for an input X — Brute force
solution: score n^c outputs
Can we do faster?

• **Update:** stochastic gradient descent to move in a direction that decreases the loss

$$w \leftarrow w - \alpha \frac{\partial \mathcal{L}(w)}{\partial w}$$

CRF: Learning

• Learning: maximize the log-likelihood over the training data

$$\mathcal{L}(w) = \sum_{(X,Y)\sim\mathcal{D}_{\text{train}}} \log P(Y|X)$$

$$= \sum_{(X,Y)\sim\mathcal{D}_{\text{train}}} w^{\top} f(Y,X) - \log Z(X)$$

$$w^{*} = \arg \max_{w} \mathcal{L}(w)$$

Sum over all possible outputs Y
for an input X — Brute force
solution: score n^c outputs
Can we do faster?

• **Update:** stochastic gradient descent to move in a direction that decreases the loss

$$w \leftarrow w - \alpha \frac{\partial \mathcal{L}(w)}{\partial w}$$

Reflection of Gradient

• The gradient w.r.t. each feature weight

Dynamic Programing

• Learning: maximize the log-likelihood over the training data

$$\begin{aligned} \frac{\partial \log Z(X)}{\partial w_j} = & \mathbb{E}_Y \left[\sum_{i=1}^n f_j(y_{i-1}, y_i, X, i) \right] \\ = & \sum_{i=1}^n \mathbb{E}_{y'_{i-1}, y'_i} [P(y'_{i-1}, y'_i | X) f_j(y'_{i-1}, y'_i, X, i)] \\ = & \sum_{i=1}^n \sum_{y'_{i-1}, y'_i} P(y'_{i-1}, y'_i | X) f_j(y'_{i-1}, y'_i, X, i) \end{aligned}$$

 $P(y'_{i-1}, y'|X)$ can be computed by dynamic programing (forward-backward algorithm) — sum production algorithm, basically replace the max operation in Viterbi algorithm by sum operation

CRF Decoding: Viterbi

- Same as HMM decoding
- Viterbi (max-production algorithm): define the recursive function to compute the max value of the past partial sequence

$$Y^* = \arg \max_{Y} \log P(Y|X)$$

$$= \arg \max_{Y} w^\top f(Y,X) - \log Z(X)$$

$$= \arg \max_{Y} \sum_{i=1}^n \sum_{j=1}^d w_j f_j(y_{i-1},y_i,X,i)$$

$$Decoding output doesn't depend on the second term$$

Feature functions

 Feature functions based on possible combination of words and tags, or other information such as POS tag (if given), whether the word is capitalized or not

$$q_1(y_{i-1}, y_i, X) = \begin{cases} 1 & \text{if } y_{i-1} = \text{OTHER and } y_i = \text{PERSON} \\ 0 & \text{otherwise} \end{cases}$$

$$g_2(y_i, X) = \begin{cases} 1 & \text{if } y_i = \text{PERSON and } x_i = \text{John} \\ 0 & \text{otherwise} \end{cases}$$

Feature values are not limited to just binary values, can be real-values too. Number of features can be tens of thousands or more.

Feature Selection

- 1. Initially CRF model has no features (uniform prediction)
- Create some candidate feature sets, e.g., (combination of any word-tag pairs, x=John, y_i= PERSON). There are VK possible pairs
- 3. Build a new CRF w/ a subset of features
- 4. Include the selected features that improves over the previous CRF
- 5. Go to step 3 until enough features have been added to CRF

Neural CRF

• Rather than hand-crafted features, let's use NN to learn features.

Lample et. al 2016 Neural Architectures for Named Entity Recognition

Learned Feature

- ${}^{P_{i,y_i}}$: the output of the bi-LSTM model followed by a linear projection layer. $P \in \mathbb{R}^{n \times C}$
- $A \in \mathbb{R}^{C+2 \times C+2}$: is the transition matrix from one state (tag) to the other state, including the start/end states (so C+2).

Training: forward pass

• During training, we need to compute the log of the condition probability:

$$\log(p(\mathbf{y}|\mathbf{X})) = s(\mathbf{X}, \mathbf{y}) - \log\left(\sum_{\widetilde{\mathbf{y}} \in \mathbf{Y}_{\mathbf{X}}} e^{s(\mathbf{X}, \widetilde{\mathbf{y}})}\right)$$
$$= s(\mathbf{X}, \mathbf{y}) - \text{logadd } s(\mathbf{X}, \widetilde{\mathbf{y}}). \quad (1)$$

- Why? $= s(\mathbf{X}, \mathbf{y}) \text{logadd } s(\mathbf{X}, \widetilde{\mathbf{y}}), \quad (1)$ $\underset{\widetilde{\mathbf{y}} \in \mathbf{Y}_{\mathbf{X}}}{\overset{\mathbf{Y}}{=} \mathbf{Y}_{\mathbf{X}}}$
 - Avoid floating-point issues, more stable.
 - The second term can be solved by dynamic programming (sumproduct)
- Use MLE as objective function, and NN-based back-propogation to update the gradient of each learning parameters (including Bi-LSTM, CRF layer)

Code Walk: Neural CRF Implementation

https://pytorch-crf.readthedocs.io/en/stable/_modules/

torchcrf.html#CRF.forward

More Sequence Labeling Examples

Named Entity Recognition

- Goal: Segment text into spans with certain properties
- e.g., entities: PER, ORG, and LOC

Germany 's representative to the European Union 's veterinary committee Werner Zwingman said on Wednesday consumers should...

[Germany]_{LOC} 's representative to the [European Union]_{ORG} 's veterinary committee [Werner Zwingman]_{PER} said on Wednesday consumers should...

Is this a sequence labeling task?

NER (IOB format)

- BL, BO, BP: beginning of LOC, ORG, PER respectively
- CL, CO, CP: continuation of chunks for LOC, ORG, PER
- NA: other words

Germany 's representative to the European Union 's veterinary committee Werner Zwingman said on Wednesday consumers should...

Germany/BL 's/NA representative/NA to/NA the/NA European/BO Union/CO 's/NA veterinary/NA committee/NA Werner/BP Zwingman/CP said/NA on/NA Wednesday/NA consumers/NA should/NA...

NER as Sequence Labeling

• IOB tagging scheme

[ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said.

Words	IOB Label	IO Label I-ORG	
American	B-ORG		
Airlines	I-ORG	I-ORG	
,	0	0	
a	0	0	
unit	0	0	
of	0	0	
AMR	B-ORG	I-ORG	
Corp.	I-ORG	I-ORG	
,	0	0	
immediately	0	0	

Named Entity tags

Туре	Tag	Sample Categories	Example sentences
People	PER	people, characters	Turing is a giant of computer science.
Organization	ORG	companies, sports teams	The IPCC warned about the cyclone.
Location	LOC	regions, mountains, seas	The Mt. Sanitas loop is in Sunshine Canyon.
Geo-Political Entity	GPE	countries, states, provinces	Palo Alto is raising the fees for parking.
Facility	FAC	bridges, buildings, airports	Consider the Golden Gate Bridge.
Vehicles	VEH	planes, trains, automobiles	It was a classic Ford Falcon.

Ambiguity in NER

• Washington can be PER or ORG or LOC, VEH

[PER Washington] was born into slavery on the farm of James Burroughs. [ORG Washington] went up 2 games to 1 in the four-game series. Blair arrived in [LOC Washington] for what may well be his last state visit. In June, [GPE Washington] passed a primary seatbelt law. The [VEH Washington] had proved to be a leaky ship, every passage I made...

Common hand-crafted Features

identity of w_i , identity of neighboring words embeddings for w_i , embeddings for neighboring words part of speech of w_i , part of speech of neighboring words base-phrase syntactic chunk label of w_i and neighboring words presence of w_i in a **gazetteer** w_i contains a particular prefix (from all prefixes of length ≤ 4)

 w_i contains a particular prefix (from all prefixes of length ≤ 4) w_i contains a particular suffix (from all suffixes of length ≤ 4) w_i is all upper case

word shape of w_i , word shape of neighboring words short word shape of w_i , short word shape of neighboring words presence of hyphen

Common hand-crafted Features

- gazetteers
 - A list of place names providing millions of entries for locations with detailed geographical and political information
 - binary indicator features: define the condition for some prefix, suffix, etc.

prefix(w_i) = L prefix(w_i) = L' prefix(w_i) = L'O prefix(w_i) = L'Oc word-shape(w_i) = X'Xxxxxxx $suffix(w_i) = tane$ $suffix(w_i) = ane$ $suffix(w_i) = ne$ $suffix(w_i) = e$ $short-word-shape(w_i) = X'Xx$

Semantic Role Labeling

- A *semantic role* in language is the relationship that a syntactic constituent has with a predicate.
- Typical semantic arguments include Agent, Patient, Instrument, etc. and also adjunctive arguments indicating Locative, Temporal, Manner, Cause, etc. aspects.
- Recognizing and labeling semantic arguments is a key task for answering "Who", "When", "What", "Where", "Why", etc. questions in Information Extraction, Question Answering, Summarization.

 $[A_{A0} He] [A_{M-MOD} would] [A_{M-NEG} n't] [Vaccept] [A_1 anything of value] from [A_2 those he was writing about].$

V: verb A0: acceptor A1: thing accepted A2: accepted-from A3: attribute AM-MOD: modal AM-NEG: negation

CoNLL-2004

Multilingual POS tagging

- In morphologically-rich languages like Czech, Hungarian, Turkish
 - a 250,000 word token corpus of Hungarian has more than twice as many word types as a similarly sized corpus of English
 - a 10 million word token corpus of Turkish contains four times as many word types as a similarly sized English corpus
- => Many UNKs
- More information is coded in morphology

Yerdeki izin temizlenmesi gerek. The trace on the floor should be cleaned.	iz + Noun+A3sg+Pnon+Gen
Üzerinde parmak izin kalmiş	iz + Noun+A3sg+P2sg+Nom
Your finger print is left on (it).	

Multilingual POS tagging

- AsdfasIn non-word-space languages like Chinese word segmentation is either applied before tagging or done jointly
 - UNKs are difficult: the majority of unknown words are common nouns and verbs because of extensive compounding
- Universal POS tagset accounts for cross-linguistic differences

Questions?