
CS769 Advanced NLP

Language Modeling
Junjie Hu

Slides adapted from Graham
https://junjiehu.github.io/cs769-spring22/

1

https://junjiehu.github.io/cs769-spring22/

Are These Sentences OK?
• Jane went to the store.

• store to Jane went the.

• Jane went store.

• Jane goed to the store.

• The store went to Jane.

• The food truck went to Jane.

2

Engineering Solutions
• Jane went to the store.

• store to Jane went the.

• Jane went store.

• Jane goed to the store.

• The store went to Jane.

• The food truck went to Jane.

} Create a grammar of

the language

} Consider

morphology and exceptions

} Semantic categories,

preferences

} And their exceptions

3

Quick Review of Probability
• Event space (e.g.,)—in this class, usually discrete

• Random variables (e.g.,)

• Typical statement: “random variable takes value with
probability , or in shorthand, ”

• Joint probability:

• Conditional probability:

• Bayes rule:

• Independent variables :

• The difference between true and estimated probability distributions

𝒳, 𝒴
X, Y

X x ∈ 𝒳
P(X = x) P(x)

P(X = x, Y = y)

P(X = x |Y = y) =
P(X = x, Y = y)

P(Y = y)
P(X, Y) = P(X |Y)P(Y) = P(Y |X)P(X)

X, Y P(X, Y) = P(X)P(Y)

4

Notation and Definitions
• is a finite set of (discrete) symbols (e.g., words or characters);

• is the (infinite) set of sequences of symbols from

• In language modeling, we imagine a sequence of random variables
 that continues until “[EOS]”

• is the (infinite) set of sequences of symbols, with the last token
“[EOS]”

• LM problem: Estimate the probability of a sequence

𝒱
V = |𝒱 |

𝒱* 𝒱

X = ⟨x1, x2, …, xn⟩ xn =

𝒱+ 𝒱
xn =

P(X), X ∈ 𝒱+

5

Notation and Definitions
• is a finite set of (discrete) symbols (e.g., words or characters);

• is the (infinite) set of sequences of symbols from

• In language modeling, we imagine a sequence of random variables
 that continues until “[EOS]”

• is the (infinite) set of sequences of symbols, with the last token
“[EOS]”

• LM: Estimate the probability of a sequence

𝒱
V = |𝒱 |

𝒱* 𝒱

X = ⟨x1, x2, …, xn⟩ xn =

𝒱+ 𝒱
xn =

P(X), X ∈ 𝒱+

6

Language Modeling Problem
• Input: training data a sequence

• Sometimes it’s useful to consider a collection of training
sentences, each in , but it complicates notation.

• Output:

X = ⟨x1, x2, …, xn⟩ ∈ 𝒱+

𝒱+

P : 𝒱+ → ℝ

7

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

P (xi | x1, . . . , xi�1)

The big problem: How do we predict

?!?

What Can we Do w/ LMs?
• Score sentences, e.g., :P(X = "Jane went to the store")

• Generate sentences:

while didn’t choose end-of-sentence symbol, i.e., [EOS]:

 calculate probability

 sample a new word from the probability distribution

P(Next Word |Context)

Jane went to the store . → high

store to Jane went the . → low

(same as calculating loss for training)

8

Count-based Language
Models

9

Review: Count-based
Unigram Model

• Independence assumption: 

• Count-based maximum-likelihood estimation:  
 
 

• Interpolation w/ UNK model:

P (xi|x1, . . . , xi�1) ⇡ P (xi)

<latexit sha1_base64="euJyl9NxtFvcXs8q5kq8afGoAAI=">AAACFXicbVDNS8MwHE3n15xfVY9egkPYYI5WJnocevE4wX3AOkqapVtY2pQklY26f8KL/4oXD4p4Fbz535h1Pejmg8DLe+9H8ntexKhUlvVt5FZW19Y38puFre2d3T1z/6AleSwwaWLOuOh4SBJGQ9JUVDHSiQRBgcdI2xtdz/z2PRGS8vBOTSLSC9AgpD7FSGnJNSuN0til8AGOXbsCHdbnSlb0JaGn9rQMHRRFgo9hmiq7ZtGqWingMrEzUgQZGq755fQ5jgMSKsyQlF3bilQvQUJRzMi04MSSRAiP0IB0NQ1RQGQvSbeawhOt9KHPhT6hgqn6eyJBgZSTwNPJAKmhXPRm4n9eN1b+ZS+hYRQrEuL5Q37MoOJwVhHsU0GwYhNNEBZU/xXiIRIIK11kQZdgL668TFpnVbtWPb+tFetXWR15cASOQQnY4ALUwQ1ogCbA4BE8g1fwZjwZL8a78TGP5oxs5hD8gfH5A/cRnNc=</latexit>

PMLE(xi) =
ctrain(xi)P
x̃ ctrain(x̃)

<latexit sha1_base64="/11Qjf01604wXAmlZGP7Vu1jGqU=">AAACSHicbZDBSxtBFMZno60aa0312MtgEPQSdkXRS0EqBQ8WUmiMkA3L7OStDs7OLjNvS8Kwf54Xj976N3jxoIi3TpKtqPGDgY/v9x4z88W5FAZ9/69Xm5v/8HFhcam+/Gnl82rjy9qpyQrNocMzmemzmBmQQkEHBUo4yzWwNJbQjS+Pxrz7B7QRmfqNoxz6KTtXIhGcoYuiRtSObIgwRPvz5EdZbg0jsU2/0TDRjFv+n6FmQlW0tKEp0jERcgB2WJYzY89ou4waTb/lT0RnTVCZJqnUjho34SDjRQoKuWTG9AI/x75lGgWXUNbDwkDO+CU7h56ziqVg+nZSREk3XTKgSabdUUgn6csNy1JjRmnsJlOGF+YtG4fvsV6ByUHfCpUXCIpPL0oKSTGj41bpQGjgKEfOMK6FeyvlF8x1iK77uishePvlWXO60wp2W3u/dpuH36s6FslXskG2SED2ySE5Jm3SIZxckVtyTx68a+/Oe/SepqM1r9pZJ69Uq/0D+Ki1hg==</latexit>

P (xi) = (1� �unk) ⇤ PMLE(xi) + �unk ⇤ Punk(xi)

<latexit sha1_base64="eop8PFR/vWEJiFCzxkrvdew+jw8=">AAACSnicbVBLSwMxGMzW+qqvqkcvwSK0imVXFL0IRRE8KKxgtdCWJZumNTSbXZJvxbLs7/PiyZs/wosHRbyYPgRbHQjMN98MScaPBNdg2y9WZio7PTM7N59bWFxaXsmvrt3oMFaUVWkoQlXziWaCS1YFDoLVIsVI4At263dP+/vbe6Y0D+U19CLWDEhH8janBIzk5YlbfPB4CR/jorPbECbYIl7SAPYASSy7aVradn/my4uzNB3ad/B/3m3sjs0Dr5cv2GV7APyXOCNSQCO4Xv650QppHDAJVBCt644dQTMhCjgVLM01Ys0iQrukw+qGShIw3UwGVaR4yygt3A6VORLwQP2dSEigdS/wjTMgcKcnd33xv109hvZRM+EyioFJOryoHQsMIe73iltcMQqiZwihipu3YnpHFKFg2s+ZEpzJL/8lN3tlZ798cLVfqJyM6phDG2gTFZGDDlEFnSMXVRFFj+gVvaMP68l6sz6tr6E1Y40y62gMmew3NgezLg==</latexit>

10

Higher-order n-gram Models
• Limit context length to n, count, and divide

• Add smoothing, to deal with zero counts:
P (xi | xi�n+1, . . . , xi�1) =�PML(xi | xi�n+1, . . . , xi�1)

+ (1� �)P (xi | x1�n+2, . . . , xi�1)

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

P(example | this is an) = c(this is an example)

c(this is an)

11

Smoothing Methods

(e.g. Goodman 1998)

• Additive/Dirichlet:

• Discounting:

P (xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi) + ↵P (xi | xi�n+2, . . . , xi�1)

c(xi�n+1, . . . , xi�1) + ↵

<latexit sha1_base64="2HeiZwFlQxdWf55WDkF3vDb/JIA=">AAAChXicdVFdS8MwFE3rx+b8mvroS3AIk+lox/xAEIe++DjBTWEdJU3TLSxNS5LKRuk/8Vf55r8x6yboNi8EDueenJuc68WMSmVZX4a5tr6xWShulbZ3dvf2yweHXRklApMOjlgk3jwkCaOcdBRVjLzFgqDQY+TVGz1O+6/vREga8Rc1iUk/RANOA4qR0pRb/mhXxy6FTkh9OHZTesFrdnbuMD9S8jwn7OwM3t5BJxAIp7i6UqQlNeggFg8RXDZsLBlm/xnl036sMrdcsepWXnAZ2HNQAfNqu+VPx49wEhKuMENS9mwrVv0UCUUxI1nJSSSJER6hAelpyFFIZD/NU8zgqWZ8GERCH65gzv6+kaJQyknoaWWI1FAu9qbkql4vUcFNP6U8ThTheDYoSBhUEZyuBPpUEKzYRAOEBdVvhXiIdNxKL66kQ7AXv7wMuo263axfPjcrrYd5HEVwDE5AFdjgGrTAE2iDDsCGaVQN22iYBfPCbJpXM6lpzO8cgT9l3n8DD5a/Ig==</latexit>

interpolation hyperparameter

fallback distribution

• Kneser-Ney: discounting w/ modification of the
lower-order distribution

discount hyperparameter

↵ =
X

{x̃;c(xi�n+1,...,x̃)>0}

d

<latexit sha1_base64="RnC/vY+LfY+2lypx/Q+G7PHRCS8=">AAACK3icbVBNS8NAEN34WetX1aOXxSJU1JKIoiBKqRePFawWmhI2m227dLMJuxOxhPwfL/4VD3rwA6/+D7e1iFofDDzem2Fmnh8LrsG2X62JyanpmdncXH5+YXFpubCyeqWjRFFWp5GIVMMnmgkuWR04CNaIFSOhL9i13zsb+Nc3TGkeyUvox6wVko7kbU4JGMkrVF0i4i7BJ9jVSeilbuoCFwFLb7NjTEu3Xsp35baT7bgiiEDvfLtb+BTbbpbhwCsU7bI9BB4nzogU0Qg1r/DoBhFNQiaBCqJ107FjaKVEAaeCZXk30SwmtEc6rGmoJCHTrXT4a4Y3jRLgdqRMScBD9edESkKt+6FvOkMCXf3XG4j/ec0E2ketlMs4ASbp16J2IjBEeBAcDrhiFETfEEIVN7di2iWKUDDx5k0Izt+Xx8nVXtnZLx9c7Bcr1VEcObSONlAJOegQVdA5qqE6ougOPaBn9GLdW0/Wm/X+1TphjWbW0C9YH5/8V6bk</latexit>

interpolation calculated by sum of discounts

Goodman. An Empirical Study of Smoothing Techniques for Language Modeling. 1998. 12

Problems and Solutions?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ solution: class based language models

Dr. Jane Smith
• Cannot condition on context with intervening words

Dr. Gertrude Smith
→ solution: skip-gram language models

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

→ solution: cache, trigger, topic, syntactic models, etc.
for programming class he wanted to buy his own computer

13

When to Use n-gram
Models?

• Neural language models (next) achieve better
performance, but

• n-gram models are extremely fast to estimate/apply

• n-gram models can be better at modeling low-
frequency phenomena

• Toolkit: kenlm

https://github.com/kpu/kenlm
14

https://github.com/kpu/kenlm

LM Evaluation

15

Evaluation of LMs
• Log-likelihood: 

• Per-word Log Likelihood: 

• Per-word (Cross) Entropy: 

• Perplexity: 

16

Unknown Words
• Necessity for UNK words

• We won’t have all the words in the world in training data

• Larger vocabularies require more memory and
computation time

• Common ways:

• Limit vocabulary by frequency threshold (usually UNK
<= 1) or rank threshold

• Model characters or subwords

17

Evaluation and Vocabulary
• Important: the vocabulary must be the same over

models you compare

• Or more accurately, all models must be able to
generate the test set (it’s OK if they can generate
more than the test set, but not less)

• e.g. Comparing a character-based model to a
word-based model is fair, but not vice-versa

18

An Alternative: 
Featurized Log-Linear Models 

(Rosenfeld 1996)

19

An Alternative: 
Featurized Models

• Calculate features of the context

• Based on the features, calculate probabilities

• Optimize feature weights using gradient descent,
etc.

20

A Note: “Lookup”
• Lookup can be viewed as “grabbing” a single

vector from a big matrix of word embeddings

lookup(word)

num. words
vector

size

• Similarly, can be viewed as multiplying by a “one-
hot” vector

num. words
vector

size

0

0

1
0

0

…

*

• Former tends to be faster 21

An Alternative: Featurized Models

giving a

lookup lookup

+ +

bias

=

scores

softmax

probs

Each vector is size of
output vocabulary

• Calculate features of the context, calculate
probabilities

• Feature weights optimized by SGD, etc.

• What are similarities/differences w/ BOW classifier? 22

An Alternative: Featurized Models

giving

lookup

• Assume that we aim to learn a feature matrix where each
column corresponds to a feature vector for each word.

W0

23

lookup(giving)

|V|: num. words

Output

size

d=|V|

giving

• The word vector learns the similarity (coexistence) between the
selected word (i.e., “giving”) and the other words, i.e., the
likelihood of the next word coexisting with “giving” in the context

An Alternative: Featurized Models

giving a

lookup lookup

+ +

• Assume that we aim to learn a feature matrix where each
column corresponds to a feature vector for each word.

W0

24

lookup(a)

|V|: num. words

Output

size

d=|V|

a

• The word vector learns the similarity (coexistence) between the
selected word (i.e., “giving”) and the other words, i.e., the
likelihood of the next word coexisting with “giving” in the context

An Alternative: Featurized Models

giving a

lookup lookup

+ +

bias

=

scores

softmax

probs

Each vector is size of
output vocabulary

• Combine with the bias vector (model parameter),
compute the probability over the output vocabulary V

25

Example:
Previous words: “giving a"

a

the

talk

gift

hat

…

Words we’re

predicting

3.0

2.5

-0.2

0.1

1.2

…

b=

How likely

are they?

-6.0

-5.1

0.2

0.1

0.5

…

wa=

How likely

are they

given prev.

word is “a”?

-0.2

-0.3

1.0

2.0

-1.2

…

wgiving=

How likely

are they

given 2nd prev.

word is “giving”?

-3.2

-2.9

1.0

2.2

0.6

…

s=

Total

score

Reminder: Training
Algorithm

• Calculate the gradient of the loss function with
respect to the parameters 
 

• How? Use the chain rule / back-propagation.
More in a second

• Update to move in a direction that decreases the
loss 
 
 

@Ltrain(✓)

@✓

<latexit sha1_base64="YAB6gXNBIDMseKKx09pIN6g7zZY=">AAACKnicbVC7TsMwFHV4U14FRhaLCgmWKkEgGHksDAwgUUBqqurGvaEWjhPZN4gqyvew8CssDCDEyofglA68jmTp6NxzbZ8TZUpa8v03b2x8YnJqema2Nje/sLhUX165tGluBLZEqlJzHYFFJTW2SJLC68wgJJHCq+j2uJpf3aGxMtUXNMiwk8CNlrEUQE7q1g/D2IAowgwMSVA8TID6AlRxWnZDwnsqyIDU5WZIfSTYKr9Zh0rZrTf8pj8E/0uCEWmwEc669eewl4o8QU1CgbXtwM+oU1S3CoVlLcwtZiBu4QbbjmpI0HaKYdSSbzilx+PUuKOJD9XvGwUk1g6SyDmrJPb3rBL/m7Vzivc7hdRZTqjF10NxrjilvOqN96RBQWrgCAgj3V+56IPrjly7NVdC8DvyX3K53Qx2mrvnO42Do1EdM2yNrbNNFrA9dsBO2BlrMcEe2BN7Ya/eo/fsvXnvX9Yxb7Szyn7A+/gEo3ipPA==</latexit>

✓ ✓ � ↵
@Ltrain(✓)

@✓

<latexit sha1_base64="pxoZXjlUAQ8oxHFX7LHIMbVyXMc=">AAACS3icbVA9b9swFKScuE3dLzcZuxA1CqRDDalIkIxBumTokAB1EsA0jCf6ySZMUQL51NQQ9P+ydOnWP5GlQ4oiQylbQxrnAAKHu3sk38W5Vo7C8FfQ2thsP3m69azz/MXLV6+7b7bPXVZYiQOZ6cxexuBQK4MDUqTxMrcIaazxIp5/rv2Lb2idysxXWuQ4SmFqVKIkkJfG3VjQDAm40JgQWJtd8Ub5yAXofAYisSBLkYMlBZqLFGgmQZdfqrEg/E4lWVCm2l2NfajuRZdKNe72wn64BF8nUUN6rMHpuPtTTDJZpGhIanBuGIU5jcr6Vqmx6ojCYQ5yDlMcemogRTcql11U/L1XJjzJrD+G+FK9P1FC6twijX2y3sQ99GrxMW9YUHI4KpXJC0IjVw8lheaU8bpYPlEWJemFJyCt8n/lcga+O/L1d3wJ0cOV18n5p360198/2+sdHTd1bLG37B3bZRE7YEfshJ2yAZPsmt2wW/Yn+BH8Dv4Gd6toK2hmdth/aLX/AcMCtaw=</latexit>

27

What Problems are Handled?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ not solved yet 😞

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

→ solved! 😀

→ not solved yet 😞 28

Beyond Linear Models

29

Linear Models can’t Learn
Feature Combinations

• These can’t be expressed by linear features

• What can we do?

• Remember combinations as features (individual

scores for “students take”, “teachers write”) 
→ Feature space explosion!

• Neural networks!

students take tests→ high
students write tests → low

teachers take tests → low
teachers write tests → high

30

“Neural” Nets
Original Motivation: Neurons in the Brain

Image credit: Wikipedia

Current Conception: Computation Graphs

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

31

y = x>Ax+ b · x+ c

A node is a {tensor, matrix, vector, scalar} value

expression:

x

graph:

32

y = x>Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument 
(and also a data dependency). They are just 
pointers to nodes.
A node with an incoming edge is a function of
that edge’s tail node.

f(u) = u>

33

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary, 
binary, … n-ary. Often they are unary or binary.

34

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:

Computation graphs are generally directed and acyclic

35

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

x A

f(x,A) = x>Ax

@f(x,A)

@A
= xx>

@f(x,A)

@x
= (A> +A)x

expression:

graph:

36

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

expression:

graph:

37

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.
38

Algorithms (1)
• Graph construction

• Forward propagation

• In topological order, compute the value of the
node given its inputs

39

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

40

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

41

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

42

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

Forward Propagation

43

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

Forward Propagation

44

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

Forward Propagation

45

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

Forward Propagation

46

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

Forward Propagation

x>Ax+ b · x+ c

47

Algorithms (2)
• Back-propagation:

• Process examples in reverse topological order

• Calculate the derivatives of the parameters with

respect to the final value

• Parameter update:

• Move the parameters in the direction of this
derivative 

48

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Back Propagation

Much more detail next class! 49

Back to Language Modeling

50

Feed-forward Neural
Language Models

• (See Bengio et al. 2003) giving a

lookup lookup

probs

softmax+

bias

=

scores

W2

tanh( 
 W1*h + b1)

51

b2

W0

Example of Combination Features
• Word embeddings capture features of words

• e.g. feature 1 indicates verbs, feature 2 indicates determiners

• A row in the weight matrix (together with the bias) can capture

particular combinations of these features

• e.g. the 34th row in the weight matrix looks at feature 1 in the

second-to-previous word, and feature 2 in the previous word

1.2
-0.1
0.7
-2.1
0.5

-0.3
2.0
0.6
-0.8
-0.4

giving

a

w34 b34
1.5
0
0
0
0

0
1.3
0
0
0

-2* + =
positive number if

the previous word is a

determiner and

second-to-previous

word is a verb

52

Where is Strength Shared?
giving a

lookup lookup

probs

softmax

tanh( 
 W1*h + b1)

+

bias

=

scores

W2Word embeddings:

Similar input words

get similar vectors

Similar output words

get similar rows in

in the output matrix

Similar contexts get

similar hidden states

53

b2

W0

Tying Input/Output
Embeddings

• We can share parameters
between the input embeddings
W0 and output embeddings W2
(Press et al. 2016, inter alia)

giving a

pick row pick row

probs

softmax

tanh( 
 W1*h + b1)

+

bias

=

scores

W2

Want to try? Delete the input embeddings W0, and

instead pick a row from the output matrix W2. 54

b2

W0

• Cannot share strength among similar words
she bought a car

she purchased a car
she bought a bicycle

she purchased a bicycle

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

→ solved! 😀

→ not solved yet 😞

→ solved, and similar contexts as well! 😀

What Problems are Handled?

55

Many Other Potential
Designs!

• Neural networks allow design of arbitrarily complex
functions!

• In future classes:

• Recurrent neural network LMs

• Transformer LMs

56

Questions?

LM Problem Definition
Count-based LMs

Evaluating LMs

Log-linear LMs
Neural Net Basics

Feed-forward NN LMs

57

Quiz 1: https://forms.gle/bV72hMZy3qd6UbKr7

 Survey: https://forms.gle/3RsuRYqi1BdakTyJA

https://forms.gle/bV72hMZy3qd6UbKr7
https://forms.gle/3RsuRYqi1BdakTyJA

