
CS769 Advanced NLP

Language Agents and
LLM Programming

Junjie Hu

Slides adapted from agent tutorial at EMNLP 2024
https://junjiehu.github.io/cs769-fall25/

1

https://junjiehu.github.io/cs769-fall23/

Goal for Today
• Part I: Introduction of Language Agents

• History, different AI agents
• Part II: Foundations: Key Components of Language Agents

• Reasoning, Memory, Planning
• Part III: LLM Coding Agents for Software Development

• Open Challenges

2

What is agent?
“An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actuators.”

 — Russell & Norvig. AI: A Mordern Approach (2020)

3

“Modern” agent = LLM + External Environment?

4

“Modern” agent = LLM + External Environment?

5

What’s fundamentally different now?
• Contemporary AI agents, with integrated LLM(s), can use language as a vehicle

for reasoning and communication
• Instruction following, in-context learning, output customization
• Reasoning (for better acting): state inferences, self-reflection, replanning, etc.

6

Language agents: a new
type of AI agents

• These contemporary AI agents capable of using language for
reasoning and communication are best called “language agents.”
They are qualitatively a different type of AI agents with language
being their most distinct trait.

• What about multimodal agents?
• While there’s perception of other input modalities, language is

still doing the heavy lifting (i.e., reasoning and communication)
• What about simply LLM agents?

• The key is using language for reasoning and communication, but
that doesn’t have to come from an LLM;

• Maybe in a few years, we will move beyond LLMs, but the need
for universal language understanding and production in agents
will remain

7

Reconciling with classical view of
language agents

• Reasoning by generating tokens is a
new type of action (vs. actions in
external environments)

• Internal environment, where reasoning
takes place in an inner monologue
fashion

• Self-reflection is a ‘meta’ reasoning
action (i.e., reasoning over the reasoning
process), akin to metacognitive functions

• Reasoning is for better acting, by
inferring environmental states,
retrospection, dynamic replanning, etc.

• Percept and external action spaces are
substantially expanded, thanks to using
language for communication and
multimodal perception 8

Evolution of AI Agents

9

Image sources: https://www.scaler.com/topics/artificial-intelligence-tutorial/knowledge-based-agent/
Mnih et al., “Human-level control through deep reinforcement learning.” Nature (2015)

https://www.scaler.com/topics/artificial-intelligence-tutorial/knowledge-based-agent/

10

Evolution of AI Agents

Image sources: https://www.scaler.com/topics/artificial-intelligence-tutorial/knowledge-based-agent/
Mnih et al., “Human-level control through deep reinforcement learning.” Nature (2015)

https://www.scaler.com/topics/artificial-intelligence-tutorial/knowledge-based-agent/

11

Evolution of AI Agents

Image sources: https://www.scaler.com/topics/artificial-intelligence-tutorial/knowledge-based-agent/
Mnih et al., “Human-level control through deep reinforcement learning.” Nature (2015)

https://www.scaler.com/topics/artificial-intelligence-tutorial/knowledge-based-agent/

12

Evolution of AI Agents

Image sources: https://www.scaler.com/topics/artificial-intelligence-tutorial/knowledge-based-agent/
Mnih et al., “Human-level control through deep reinforcement learning.” Nature (2015)

https://www.scaler.com/topics/artificial-intelligence-tutorial/knowledge-based-agent/

Part II: Foundations: Reasoning,
Memory, and Planning

13

Cognitive Language Agents

14
Sumers et al., 2024. Cognitive Architectures for Language Agents, TMLR.

Key Concepts for Language Agents
• Action space (beyond environment actions)

• Reasoning: update short-term memory (context
window)

• Retrieval/Learning: read/write long-term
memory (model weights, vector store, self-notes,
event flows, etc)

• Planning: (inference-time) algorithm to choose an
action from the action space

• Environment: receives an action from the agent
and provides a reward

15
Sumers et al., 2024. Cognitive Architectures for Language Agents, TMLR.

Reasoning
• For humans: various mental processes

16

Reasoning
• For humans: various mental processes
• For LMs: intermediate generation (Chain-of-Thought)

17

Reasoning
• For humans: various mental processes
• For LMs: intermediate generation (Chain-of-Thought)
• For agents: internal actions.

18

Why is reasoning helpful for agents?

19

Why is reasoning helpful for agents?

20

Conversely, acting also helps reasoning

21

ReAct [Yao et al, 2022]

22
Yao et al., 2022. ReAct: Synergizing Reasoning and Acting in Language Models

Reasoning without acting

23

Reasoning without acting

24

Reasoning with acting

25

Reasoning with acting

26

Acting without reasoning

27

Acting in language

28
Shridhar et al. "ALFWorld: Aligning Text and Embodied Environments for Interactive Learning. "

The flexibility of “acting”
• Tool usage: use external tools as action

29

Wang, et al., ICLR 2024. Executable Code Actions Elicit Better LLM Agents.

The flexibility of “acting”
• Tool usage: use external tools as action

30
Bran, et al., 2023. ChemCrow: Augmenting large-language models with chemistry tools

Why is reasoning special for agents?

31

Why is reasoning just now for agents?

• Bigger action space -> More capacity, harder decision making
• The space of reasoning/language is infinite

• LLMs learn reasoning priors by imitating various human reasoning traces

32

Reasoning: Takeaways
• Reasoning as internal actions for language agents
• Reasoning guides acting & acting updates reasoning

33

Memory
Memory is everything. Without it, we are nothing.

 — Eric Kandel

34

Memory

35

Memory

36

A short-term memory

What about retrieval and RAG?
• We can think of the retrieval corpus as “read-only” long-term memory

• Written by others (e.g., Wikipedia editors), not the agent itself
• Limitations

• Can only live “others’ experience”, which might not be optimal for the agent
• The way corpus is written might not be optimal for agent usage

• Agent memory: also be able to autonomously write to it!

37

Long-term memory (LTM): Content
• What content is stored in LTM?
• Note: here we categorize three LTMs based on memory content

38

Episodic memory
• Generative agents for social simulations

39

• Write: append-only event streams
• Read: retrieval based on heuristic scores

40

Episodic memory

Semantic memory

41

• Write: LLM reasoning over events
• Read: retrieval

Procedural memory

42

• Write: Coding-based skills
• Read: embedding retrieval

Wang, et al., 2023. Voyager: An Open-Ended Embodied Agent with Large Language Models

Exercise

43

• Where does a cognitive language agent
store long-term memory?

• Where does a agent store short-term
memory?

• What’s the difference between external
environment vs internal memory then?

Exercise
• Where does a cognitive language agent

store long-term memory?
• External database
• LLM’s parameters

• Where does a agent store short-term
memory?
• Prompt

• What’s the difference between external
environment vs internal memory then?
• Memory contains agent-specific contents

(experiences, knowledge, skills)
• Environment is independent of all agents

44

Planning: (simplified) definition

• General trends in planning settings for language agents
• Increasing expressiveness in goal specification, e.g.,

in natural language as opposed to formal language
• Substantially expanded or open-ended action space
• Increasing difficulty in automated goal test

45

Language agent planning: web agents

46

Deng et al., “Mind2Web: Towards a Generalist Agent for the Web.” NeurIPS (2024)

Planning paradigms for language agents

47

Tree search with real interactions

48

Jing Yu Koh, Stephen McAleer, Daniel Fried, Ruslan Salakhutdinov. "Tree Search for Language Model
Agents." arXiv preprint arXiv:2407.01476 (2024).
Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, Yu-Xiong Wang. “Language Agent Tree
Search Unifies Reasoning Acting and Planning in Language Models.” ICML (2024).

Challenges with tree search in the real world

49

Planning paradigms for language agents

50

• Train a world model that knows what is going to happen

Still open question?

Part III: LLM Coding Agents
for Software Development

51

More and more major businesses and
industries are being run on software and
delivered as online services—from movies to
agriculture to national defense. […] Over the
next 10 years, I expect many more industries
to be disrupted by software […].

— Marc Andreessen - Why Software is Eating the World (2011)

If we gave everyone the ability to quickly write
software to achieve their goals, what could they do?

What is Involved in
Developing Software?

Today was a Good Day: The Daily Life of Software Developers
Meyer et al. 2019

17%

36%
10%

8%

14%

15%
Coding
Bugfixing
Testing
Documents/Reviews
Communication
Other

How Can We Support Developers?
(Neubig 2024)

Development Copilots
• Work synchronously with the developer to ease

writing code
• e.g. Github Copilot/Cursor

Development Agents
• For coding (e.g. SWE-Agent, Aider)
• For broader development (e.g. Devin, OpenHands)

Non-coding Tasks

• Gathering information from Github
• Managing task resolution software
• Setting up web infrastructure

How Promising?
• Code generation leads to large improvements in

productivity (Github 2022)

Challenges in Development
Agents

• Defining the Environment
• Designing an Observations/Actions
• Code Generation (atomic actions)
• File Localization (exploration)
• Planning and Error Recovery
• Safety

Types of Environments
• Actual Environments:

• Source Repositories: Github, Gitlab
• Task Management Software: Jira, Linear
• Office Software: Google Docs, Microsoft Office
• Communication Tools: Gmail, Slack

• Testing Environments:
• Mostly focused on coding!
• Developers do more, e.g. browse the web (next session)

Data Science
Notebooks: ARCADE

(Yin et al. 2022)

• Data science notebooks
(e.g. Jupyter) allow for
incremental
implementation

• Allows evaluation of code
in context

Dataset: SWEBench
(Jiminez et al. 2023)

• Issues from GitHub + codebases -> pull request

• Requires long-context understanding, precise
implementation

Action Spaces

• Coding Agents
• Understand repository structure
• Read in existing code
• Modify or produce code
• Run code and debug

Example: CodeAct (Wang et al. 2024)
• Interact w/ the environment through code

• Can execute bash commands, Jupyter commands
• Faster resolution, higher success than direct tool use

Example: SWE-Agent
(Yang+Jimenez et al. 2024)

• Define specialized tools that make it possible to
efficiently explore repositories and edit code

Example: OpenHands
(Wang et al. 2024)

• Defines “event
stream” for coding,
execution, and
browsing actions/
observations

• Implements SWE-
agents style actions
as “agent skills” that
can be called

File Localization

LLM-based Localization
• Finding the correct files given user intent

What problem or use case are you trying to solve? 
When in confirmation mode it's not possible to give instructions in between
steps. You have to reject an action and it seems like it doesn't know that the
action was rejected.

Describe the UX of the solution you'd like  
The simplest would be to have a third option, confirm action and wait. This way
the action is confirmed but before it tries to take the next step you are able to
give some feedback. Also if it somehow knows the action was rejected that
would be helpful as well so when you do reject an action it knows that action
wasn't taken.

https://github.com/All-Hands-AI/OpenHands/issues/4259
• Which JavaScript file should I modify?
• Analogous to environment understanding / exploration problems in other

agents

https://github.com/All-Hands-AI/OpenHands/issues/4259

Solution 1:
Offload to the User

• Experienced users familiar with prompting and the
project can specify which files to use

In .github/workflows/openhands-resolver.yml and .github/
workflows/openhands-resolver-experimental.yml, we should check to
make sure that all required environment variables are set before running any
additional workflows. If all of the variables are not set, we can fail immediately with
an error.

https://github.com/All-Hands-AI/openhands-resolver/issues/146

https://github.com/All-Hands-AI/openhands-resolver/issues/146

Solution 2:
Prompt the Agent w/ Search Tools
• e.g. SWE-agent provides a tool for searching repositories

Solution 3:
A-priori Map the Repo

• Create a map of the repo and prompt agent with it
• Aider repomap creates a tree-structured map of the

repo
• Agentless (Xia et al. 2024) does a hierarchical

search for every issue

Solution 4: Retrieval-
augmented Code Generation
• Retrieve similar code, and fill it in with a retrieval-augmented

LM (e.g. CodeRAGBench, Wang+Asai et al. 2024)
• Particularly, in code there is also documentation, which can

be retrieved (Zhou et al. 2022)

• Unsolved issue: when to perform RAG in agent

Planning and Error Recovery

Hard-coded Task
Completion Process

• e.g. Agentless (Xie et al. 2024) has a hard-coded
progress of
• File Localization
• Function Localization
• Patch Generation
• Patch Application

LLM-Generated Plans
• LLM-generated planning step, then one or more executors
• CodeR [Chen et al. 2024]

Coding Agents: Takeaway
• Copilots already very useful, code agents getting

there
• Current challenges: code LLMs, editing,

localization, planning, safety
• Future directions:

• Agentic training methods
• Human-in-the-loop
• Broader software tasks than coding

Questions?

77

