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Goal for Today
• Part I: Introduction of Language Agents

• History, different AI agents 
• Part II: Foundations: Key Components of Language Agents

• Reasoning, Memory, Planning 
• Part III: LLM Coding Agents for Software Development

• Open Challenges
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What is agent?
“An agent is anything that can be viewed as perceiving its environment 
through sensors and acting upon that environment through actuators.” 

              — Russell & Norvig. AI: A Mordern Approach (2020)
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“Modern” agent = LLM + External Environment?
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“Modern” agent = LLM + External Environment?
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What’s fundamentally different now?
• Contemporary AI agents, with integrated LLM(s), can use language as a vehicle 

for reasoning and communication 
• Instruction following, in-context learning, output customization 
• Reasoning (for better acting): state inferences, self-reflection, replanning, etc.
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Language agents: a new 
type of AI agents

• These contemporary AI agents capable of using language for 
reasoning and communication are best called “language agents.” 
They are qualitatively a different type of AI agents with language 
being their most distinct trait. 

• What about multimodal agents? 
• While there’s perception of other input modalities, language is 

still doing the heavy lifting (i.e., reasoning and communication) 
• What about simply LLM agents? 

• The key is using language for reasoning and communication, but 
that doesn’t have to come from an LLM;  

• Maybe in a few years, we will move beyond LLMs, but the need 
for universal language understanding and production in agents 
will remain
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Reconciling with classical view of 
language agents

• Reasoning by generating tokens is a 
new type of action (vs. actions in 
external environments) 

• Internal environment, where reasoning 
takes place in an inner monologue 
fashion 

• Self-reflection is a ‘meta’ reasoning 
action (i.e., reasoning over the reasoning 
process), akin to metacognitive functions 

• Reasoning is for better acting, by 
inferring environmental states, 
retrospection, dynamic replanning, etc. 

• Percept and external action spaces are 
substantially expanded, thanks to using 
language for communication and 
multimodal perception 8



Evolution of AI Agents
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Image sources: https://www.scaler.com/topics/artificial-intelligence-tutorial/knowledge-based-agent/ 
Mnih et al., “Human-level control through deep reinforcement learning.” Nature (2015)

https://www.scaler.com/topics/artificial-intelligence-tutorial/knowledge-based-agent/
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Evolution of AI Agents
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Part II: Foundations: Reasoning, 
Memory, and Planning
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Cognitive Language Agents
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Sumers et al., 2024. Cognitive Architectures for Language Agents, TMLR.



Key Concepts for Language Agents
• Action space (beyond environment actions) 

• Reasoning: update short-term memory (context 
window) 

• Retrieval/Learning: read/write long-term 
memory (model weights, vector store, self-notes, 
event flows, etc) 

• Planning: (inference-time) algorithm to choose an 
action from the action space 

• Environment: receives an action from the agent 
and provides a reward
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Sumers et al., 2024. Cognitive Architectures for Language Agents, TMLR.



Reasoning
• For humans: various mental processes
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Reasoning
• For humans: various mental processes 
• For LMs: intermediate generation (Chain-of-Thought)
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Reasoning
• For humans: various mental processes 
• For LMs: intermediate generation (Chain-of-Thought) 
• For agents: internal actions.
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Why is reasoning helpful for agents?

19



Why is reasoning helpful for agents?
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Conversely, acting also helps reasoning

21



ReAct [Yao et al, 2022]
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Yao et al., 2022. ReAct: Synergizing Reasoning and Acting in Language Models



Reasoning without acting
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Reasoning without acting
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Reasoning with acting
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Reasoning with acting
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Acting without reasoning
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Acting in language

28
Shridhar et al. "ALFWorld: Aligning Text and Embodied Environments for Interactive Learning. "



The flexibility of “acting”
• Tool usage: use external tools as action
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Wang, et al., ICLR 2024. Executable Code Actions Elicit Better LLM Agents.



The flexibility of “acting”
• Tool usage: use external tools as action

30
Bran, et al., 2023. ChemCrow: Augmenting large-language models with chemistry tools



Why is reasoning special for agents?
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Why is reasoning just now for agents?

• Bigger action space -> More capacity, harder decision making 
• The space of reasoning/language is infinite 

• LLMs learn reasoning priors by imitating various human reasoning traces
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Reasoning: Takeaways
• Reasoning as internal actions for language agents 
• Reasoning guides acting & acting updates reasoning
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Memory
Memory is everything. Without it, we are nothing. 

                                  — Eric Kandel

34



Memory
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Memory
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A short-term memory



What about retrieval and RAG?
• We can think of the retrieval corpus as “read-only” long-term memory 

• Written by others (e.g., Wikipedia editors), not the agent itself 
• Limitations 

• Can only live “others’ experience”, which might not be optimal for the agent 
• The way corpus is written might not be optimal for agent usage 

• Agent memory: also be able to autonomously write to it!
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Long-term memory (LTM): Content
• What content is stored in LTM? 
• Note: here we categorize three LTMs based on memory content
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Episodic memory
• Generative agents for social simulations
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• Write: append-only event streams 
• Read: retrieval based on heuristic scores
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Episodic memory



Semantic memory
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• Write: LLM reasoning over events 
• Read: retrieval



Procedural memory
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• Write: Coding-based skills 
• Read: embedding retrieval

Wang, et al., 2023. Voyager: An Open-Ended Embodied Agent with Large Language Models



Exercise
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• Where does a cognitive language agent 
store long-term memory? 

• Where does a agent store short-term 
memory? 

• What’s the difference between external 
environment vs internal memory then? 



Exercise
• Where does a cognitive language agent 

store long-term memory? 
• External database 
• LLM’s parameters 

• Where does a agent store short-term 
memory? 
• Prompt 

• What’s the difference between external 
environment vs internal memory then? 
• Memory contains agent-specific contents 

(experiences, knowledge, skills) 
• Environment is independent of all agents
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Planning: (simplified) definition

• General trends in planning settings for language agents 
• Increasing expressiveness in goal specification, e.g., 

in natural language as opposed to formal language 
• Substantially expanded or open-ended action space 
• Increasing difficulty in automated goal test
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Language agent planning: web agents
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Deng et al., “Mind2Web: Towards a Generalist Agent for the Web.” NeurIPS (2024)



Planning paradigms for language agents
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Tree search with real interactions
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Jing Yu Koh, Stephen McAleer, Daniel Fried, Ruslan Salakhutdinov. "Tree Search for Language Model 
Agents." arXiv preprint arXiv:2407.01476 (2024).  
Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, Yu-Xiong Wang. “Language Agent Tree 
Search Unifies Reasoning Acting and Planning in Language Models.” ICML (2024).



Challenges with tree search in the real world
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Planning paradigms for language agents
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• Train a world model that knows what is going to happen

Still open question?



Part III: LLM Coding Agents 
for Software Development
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More and more major businesses and 
industries are being run on software and 
delivered as online services—from movies to 
agriculture to national defense. […] Over the 
next 10 years, I expect many more industries 
to be disrupted by software […]. 

— Marc Andreessen - Why Software is Eating the World (2011)

If we gave everyone the ability to quickly write 
software to achieve their goals, what could they do?



What is Involved in 
Developing Software?

Today was a Good Day: The Daily Life of Software Developers 
Meyer et al. 2019

17%

36%
10%

8%

14%

15%
Coding
Bugfixing
Testing
Documents/Reviews
Communication
Other



How Can We Support Developers? 
(Neubig 2024)



Development Copilots
• Work synchronously with the developer to ease 

writing code 
• e.g. Github Copilot/Cursor



Development Agents
• For coding (e.g. SWE-Agent, Aider) 
• For broader development (e.g. Devin, OpenHands)



Non-coding Tasks

• Gathering information from Github 
• Managing task resolution software 
• Setting up web infrastructure



How Promising?
• Code generation leads to large improvements in 

productivity (Github 2022)



Challenges in Development 
Agents

• Defining the Environment 
• Designing an Observations/Actions 
• Code Generation (atomic actions) 
• File Localization (exploration) 
• Planning and Error Recovery 
• Safety



Types of Environments
• Actual Environments:

• Source Repositories: Github, Gitlab 
• Task Management Software: Jira, Linear 
• Office Software: Google Docs, Microsoft Office 
• Communication Tools: Gmail, Slack 

• Testing Environments: 
• Mostly focused on coding! 
• Developers do more, e.g. browse the web (next session)



Data Science 
Notebooks: ARCADE 

(Yin et al. 2022)

• Data science notebooks 
(e.g. Jupyter) allow for 
incremental 
implementation 

• Allows evaluation of code 
in context



Dataset: SWEBench 
(Jiminez et al. 2023)

• Issues from GitHub + codebases -> pull request

• Requires long-context understanding, precise 
implementation



Action Spaces

• Coding Agents 
• Understand repository structure 
• Read in existing code 
• Modify or produce code 
• Run code and debug



Example: CodeAct (Wang et al. 2024)
• Interact w/ the environment through code

• Can execute bash commands, Jupyter commands 
• Faster resolution, higher success than direct tool use



Example: SWE-Agent 
(Yang+Jimenez et al. 2024)

• Define specialized tools that make it possible to 
efficiently explore repositories and edit code



Example: OpenHands 
(Wang et al. 2024)

• Defines “event 
stream” for coding, 
execution, and 
browsing actions/
observations 

• Implements SWE-
agents style actions 
as “agent skills” that 
can be called



File Localization



LLM-based Localization
• Finding the correct files given user intent

What problem or use case are you trying to solve? 
When in confirmation mode it's not possible to give instructions in between 
steps. You have to reject an action and it seems like it doesn't know that the 
action was rejected.

Describe the UX of the solution you'd like  
The simplest would be to have a third option, confirm action and wait. This way 
the action is confirmed but before it tries to take the next step you are able to 
give some feedback. Also if it somehow knows the action was rejected that 
would be helpful as well so when you do reject an action it knows that action 
wasn't taken.

https://github.com/All-Hands-AI/OpenHands/issues/4259 
• Which JavaScript file should I modify? 
• Analogous to environment understanding / exploration problems in other 

agents

https://github.com/All-Hands-AI/OpenHands/issues/4259


Solution 1: 
Offload to the User

• Experienced users familiar with prompting and the 
project can specify which files to use

In .github/workflows/openhands-resolver.yml and .github/
workflows/openhands-resolver-experimental.yml, we should check to 
make sure that all required environment variables are set before running any 
additional workflows. If all of the variables are not set, we can fail immediately with 
an error.

https://github.com/All-Hands-AI/openhands-resolver/issues/146 

https://github.com/All-Hands-AI/openhands-resolver/issues/146


Solution 2: 
Prompt the Agent w/ Search Tools
• e.g. SWE-agent provides a tool for searching repositories



Solution 3: 
A-priori Map the Repo

• Create a map of the repo and prompt agent with it 
• Aider repomap creates a tree-structured map of the 

repo 
• Agentless (Xia et al. 2024) does a hierarchical 

search for every issue



Solution 4: Retrieval-
augmented Code Generation
• Retrieve similar code, and fill it in with a retrieval-augmented 

LM (e.g. CodeRAGBench, Wang+Asai et al. 2024) 
• Particularly, in code there is also documentation, which can 

be retrieved (Zhou et al. 2022)

• Unsolved issue: when to perform RAG in agent



Planning and Error Recovery



Hard-coded Task 
Completion Process

• e.g. Agentless (Xie et al. 2024) has a hard-coded 
progress of 
• File Localization 
• Function Localization 
• Patch Generation 
• Patch Application



LLM-Generated Plans
• LLM-generated planning step, then one or more executors 
• CodeR [Chen et al. 2024]



Coding Agents: Takeaway
• Copilots already very useful, code agents getting 

there 
• Current challenges: code LLMs, editing, 

localization, planning, safety 
• Future directions: 

• Agentic training methods 
• Human-in-the-loop 
• Broader software tasks than coding



Questions?
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