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Goal for Today

- Variational Auto-encoder (VAE)
1. Maximize Evidence Lower Bound (ELBO)
2. Reparamertizction trick

3. Stabilizing Training

- Discrete Latent Variable Models (LVM)
1. Enumerate

2. Sampling

3. Gumbel-softmax

- LVM Applications in NLP



Discriminative vs.
GGenerative Models

* Discriminative model: calculate the probability of
output given input P(Y|X)

* Generative model: calculate the probability of a
variable P(X), or multiple variables P(X,Y)

* Which of the following models are discriminative vs.
generative”

e Standard BILSTM POS tagger

 Language model



Types of Variables

e Random vs. deterministic variables:

 Random variable (R.V.): is a math formalization of a object which depends on
a random event. Namely, it defines a function that map an event to a numerical
value. We usually use uppercase letter X, Y to denote R.V.. Once the event
has been sampled, we get a real value of the R.V., we call this realization of a
R.V., and usually use lowercase letter x, y to denote them.

 Deterministic variable: a variable that does not depend on any random event.
We typically use a, b, ¢ to denote them.

« Example:

« X denotes a R.V. of the weather, X can be realized by taking values from a set

(domain) {“rainy”, “sunny”, “cloudy”, ....}

e P(X = “rainy”) provides a probability of a realization of the R.V. (i.e., a particular
event)



Types of Variables

e Observed vs. Latent:

 Observed: something that we can observe and measure from our data, €.9.
XorY

« Latent: a variable that we assume exists, but we aren't given the value,
namely something we don'’t have data for

* In graphical models, observed variables are typically shaded nodes, and latent
variables are typically unshaded nodes.

Marginal over latent variables is usually
intractable (not computable in a reason time).
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| atent Variable Models

- A vector of latent variables z in a high-dim space 2
which we can sample from some PDF P(Z) over Z

+ For every observed X in our dataset, there is a Z that
causes the model to generate X

- A latent variable model (LVM) is a probability
distribution over two sets of variables X, Z:

p(x|z;0)



Maximum Likelihood Framework

e Maximize the probability of each x in the training set
under the generative process according to:

p(x) = / p(x|2; 0)p(z)dz



Why LVM?

e |ntuitively, latent variable z enables the model to first
decide which property to generate before it assigns
values to the output x

e Example:

e Sample a LV z from the set [0,...9] before generating
an image for the digit

7=2 -> X=

e Sample a sentiment from {positive, negative} before
generating a positive/negative movie review.

z="negative" -> x= "This is a bad movie.”



What lypes of Latent
Variables®

e |atent continuous vector (e.g. variational auto-
encoder)

e |atent discrete vector (e.g. topic model)

e |atent structure (e.g. HMM or tree-structured model)
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Variational Auto-encoders
(Kingma and Welling 2014)



VAE as a Graphical Model

e \We have a random variable X for our dataset

e We have a latent variable z sampled from a Gaussian

e We have a deterministic function f(Z; 9) that maps Z
to the data space X. If Z is a random variable (r.v.) in

Z then f(z;0)isalsoarv.in X

* |f we repeat this sampling N times, we hope to
approximate X by f(z; 6)




An Examp\e (Goersch 2016)
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A probabillistic perspective on
Variational Auto-Encoder

XD (0
Xz% Z f(z;0)

e z2~N(0,1)

 [or each datapoint s :
» Draw latent variables z; ~ p(z) (prior)

« Draw data point x; ~ pg(x|2)

 Joint probabillity distribution over data and latent variables:
p(z, z) = p(z)pe(x|2)
* Similar to Naive Bayes, HMM: only the prior differs




What is Our Loss Function?

 We would like to maximize the corpus log likelihood

log P(X) = Z log P(x;0)
rcX

* For a single example, the marginal likelihood is

Pla:0) — / Pz | 2:0)P(2)dz

* We can approximate this by sampling zs then summing

P(x; 0) Z P(x|z;0) where S(z):={z";2' ~ P(z)}
zeS(x)



Variational Inference

Two tasks of interest:

e |earn the parameters 6§ of pg(z|2)

* Inference overz with the posterior distribution: pe(z|x)
given input x, what are its latent factors”

po(z|2)p(2)
p(x)

po(z|x) =

p(x) = /P(Z)pe(ﬂf\z)dz <- intractable

« However, as p(x) is intractable pg(z|x) is also intractable.

* Solution: Variational inference approximates the
posterior pg(z|z) with a family of distributions g¢(z|x)



Variational Inference

* Variational inference approximates the true posterior
po(z|x) with a family of distributions g4 (2|T)

minimize : KL(qy(2|2)||po(2|2))

* One other target is to maximize the log-data likelihood which can
be rewritten as:

log p(r) = ELBO + KL (gg(2]a)|[ps (])

 Combining the above two, this is equivalent to maximize the
Evidence Lower Bound (ELBO)

ELBO = 41q¢(z|:v) [lng9($|Z)] o KL(QQS(Z‘ZE)HP(Z))
KL(q||p) > 0 => logp(x) > ELBO




Variational Inference

* Variational inference approximates the true posterior
po(z|x) with a family of distributions g4 (2|T)

minimize : KL(qy(2|2)||po(2|2))

* One other target is to maximize the log-data likelihood which can
be rewritten as:

log p(r) = ELBO + KL (gg(2]a)|[ps (])

 Evidence Lower Bound (ELBO)

ELBO = <1:qu(,z|.c13)[1()gp@(‘/lj|z)] o KL(C]¢(Z|ZC)HP(Z))
KL(q||p) > 0 => logp(x) > ELBO




Variational Inference

* Variational inference approximates the true
posterior pe(z|x) with a family of distributions g4 (z|z)

minimize : KL(gq(2|2)||po(z|z))

maximize: log p(z) = ELBO + KL(q4(z|z)||pa(2|x))

t ot

 Combining the above two objectives, it is equivalent
to maximize ELBO

maximize : ELBO



Variational Auto-Encoders

log pe(x) > ELBO

<

L znqe (z)x) 108 Do (X|2)| — DkL(qe (z|%)[|p(2))
—_—

Reconstruction Loss KL Regularizer

The inequality holds for any g4 (2|7), but the lower bound
is tight only if pe(2|z) = g4 (2|T)

po(z|T) is intractable



Variational Autoencoders

lOg Po (X) — IEj’zwqqs(ZIX) [logpg(x\z)] — DKL(QQb(Z‘X)Hp(Z))
| Reconstruction Loss KL Regularizer
Approx.
Posterior Model
Params @\ Params
G (2]x) peo(x|z)
Inference Generator
(Encoder) (Decoder)
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Variational Autoencoders

lOg Po (X) = IEj’zwqqs(ZIX) log pe(x|z)] — DKL(QQb(Z‘X)Hp(Z))
| Reconstruction Loss KL Regularizer
Approx.
Posterior Model
Params @ Params
\ Regularized Autoencoder
q¢(2]x) peo(x|z)
Inference Generator
(Encoder) (Decoder)
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Why prior

log pe(X) >= Eagy(apelogpe(x|z)] — Dxr(gg(z[x)||p(2))

Reconstruction Loss KL Regularizer
Approx.
Posterior Model
Params @ Params
q¢(2]x) Pe X\Z)
Inference Generator
(Encoder) (Decoder)
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Why prior

log pg(X) >=  Eangy(aix 108 po (x|2)] —Prrtemtebetpien—

Reconstruction Loss KL Regularizer
Approx.
Posterior Model
Params @ Params
q¢(2]x) Pe X\Z)
Inference Generator
(Encoder) (Decoder)
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VAE vS. At
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VAE vs. AE
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VAE vS. At

(1) Can’t sample new data from AE
(2) Can’t compute the log likelihood
of data x

AE Is not generative model:



[raining of VAE

log pe(X) >= Eagy(apelogpe(x|z)] — Dxr(gg(z[x)||p(2))

Reconstruction Loss KL Regularizer
Approx.
Posterior Model
Params @ Params
q¢(2]x) Pe X\Z)
Inference Generator
(Encoder) (Decoder)
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Problem!
Sampling Breaks Backprop

| X — f(2)|I?
f(2)
Decoder
KLIN (p(X), S(X)|IN(0, )] ('IT‘ )
(X)) [ 2(X
Encoder

(Q)
X

Figure Credit: Doersch (2016)



Solution:
Re-parameterization Irick

IX — f(2)]?
i\
f(z)
I\
KLIN(u(X),S(X))||N(0,1)]| | Decoder
A A (P)

+) 2z =¢€+ p(X)

b S
Encoder Sample € from N (0, )
(Q)
X

Figure Credit: Doersch (2016)



An Example: Generating Sentences
w/ Variational Autoencoders



Generating from Language
Models

* Remember: using ancestral sampling, we can
generate from a normal language model

while xj.1 1= “</s>":
Xj ~ P(Xj | X1, ..., Xj-1)

* We can also generate conditioned on something
P(y|x) (e.g. translation, image captioning)

while yi-1 1= "</s>":
vi ~ PCyi | X, y1, ..., Yj-1)




Generating Sentences from a
Continuous Space (Bowman et al. 2015)

* [he VAE-based approach is conditional language
model that conditions on a latent variable z

* |ike an encoder-decoder, but latent representation
'S latent variable, input and output are identical

Sentence x

1
i— Q RNN —»i— P RNN
- ¥

Latentz  Sentence x



Motivation for Latent
Variaples

* Allows for a consistent latent space of sentences?

* e.9g. Interpolation between two sentences

Standard encoder-decoder

VAE

i went to the store to buy some groceries .
1 store to buy some groceries .

1 were to buy any groceries .

horses are to buy any groceries .

horses are to buy any animal .

horses the favorite any animal .

horses the favorite favorite animal .

horses are my favorite animal .

“iwant to talk to you . ”

“t want to be with you . ”

“ do n’t want to be with you .
1 do n’t want to be with you .
she did n’t want to be with him .

»

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

* More robust to noise? VAE can be viewed as
standard model + regularization.



Difficulties In Training

* Of the two components in the VAE objective, the
KL divergence term is much easier to learn!

4:sz(z|m)[lOgP(w | 2)| = KL[Q(z | )[| P(2)]

Requires good Just need to
generative model set the mean/variance

of Q to be same as P

* Results in the model learning to rely solely on
decoder and ignore latent variable (.P(x|z) = P(x))
-> Posterior Collapse



Solution 1;
KL Divergence Annealing

e Basic idea: Multiply KL term by a constant A starting at
zero, then gradually increase to 1

e Result: model can learn to use z before getting penalized
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Figure Credit: Bowman et al. (2017)



Solution 2;
Free bits / KL thresholding

—ree bits replaces the KL term in ELBO with a hinge
0ss that maximize each component of the original
KL with a constant:

Z max |\, Dkr,(q4(2i|7)||p(2:))]

e A :Targetrate



Solution 3:
Weaken the Decoder

* But theoretically still problematic: it can be shown that
the optimal strategy is to ignore z when it is not
necessary (Chen et al. 2017)

» Solution: weaken decoder P(x|z) so using z is essential

e Use word dropout to occasionally skip inputting
porevious word in X (Bowman et al. 2015)

e Use a convolutional decoder w/ limited context
(Yang et al. 2017)



Solution 4.
Aggressive Inference Network Learning
max logpe(x)  — D (qe(2|x)|pe(2]x))

0, ~—— ~- -

marginal log data likelthood  agreement between approximate and model posteriors

\ 4

max max logpe(x) - Dx1(g4(2[%)|pe(2[x))
o & ~- ~-

marginal log data likelthood  agreement between approximate and model posteriors

(He et al. 2019)



Handling Discrete Latent
Variables



Discrete Latent Variables?

* Many variables are better treated as discrete
* Part-of-speech of a word
e Class of a guestion
* Writer traits (left-handed or right-handed, etc.)

e How do we handle these?



Method 1: Enumeration
* [or discrete variables, our integral is a sum
P(z;0) = » P(x| 2 0)P(z)

* |t the number of possible configurations for z is
small, we can just sum over all of them



Method 2: Sampling

 Randomly sample a subset of configurations of z
and optimize with respect to this subset

e \arious flavors:
 Minimum risk training
e Maximize ELBO loss

e Score function gradient estimator - Policy Gradient
Method
* Unbiased estimator but high variance - need to
control variance




Method 3: Reparameterization
(Maddison et al. 2017, Jang et al. 2017)

* Reparameterization also possible for discrete variables!
Original Categorical Sampling Method:

z = cat-sample(P(z | x))
Reparameterized Method

z = argmax(log P(z | ) + Gumbel(0,1))

where t

ne Gumbel distri

oution IS

Gumbel(0, -

) = —log(—log(

Uniform(0,1)))

* Backprop is still not possible, due to argmax



Gumbel-Softmax

* A way to soften the decision and allow for continuous
gradients

* Instead of argmax, take softmax with temperature 1
% = softmax((log P(z | &) + Gumbel(0,1))!/7)

 As T approaches O, will approach max
Categorical T=0.1 T =05 7=1.0 7 =10.0

a)

N A A

category

sample expectation




Application Examples
in NLP



Symbol Sequence Latent
Variables Miao and Blunsom 2016)

 Encoder-decoder with a sequence of latent symbols

nstruction (Soft Attentio )5]; ; 53. S, 5

--------------------------------------------------

Encoder Compressor

e Summarization in Miao and Blunsom (2016)
e Attempts to “discover” language (e.g. Havrylov and Titov 2017)

* But things may not be so simple! (Kottur et al. 2017)



Unsupervised Recurrent Neural
Network Grammars

(Kim et al., 2019)
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Questions?



