CS769 Advanced NLP

Language Modeling

Junjie Hu

Slides adapted from Graham https://junjiehu.github.io/cs769-fall25/

Goals for Today

- Problem definition
- N-gram Language Model
- Neural Language Model
- Evaluation

Are These Sentences OK?

- Jane went to the store.
- store to Jane went the.
- Jane went store.
- Jane goed to the store.
- The store went to Jane.
- The food truck went to Jane.

Engineering Solutions

- Jane went to the store.
- store to Jane went the.
- Jane went store.

- Create a grammar of the language
- Jane goed to the store.
- Consider morphology and exceptions • The store went to Jane. Semantic categories, preferences
- The food truck went to Jane. And their exceptions

Quick Review of Probability

- Event space (e.g., \mathcal{X}, \mathcal{Y})—in this class, usually discrete
- Random variables (e.g.,X, Y)
- Typical statement: "random variable X takes value $x \in \mathcal{X}$ with probability P(X = x), or in shorthand, P(x)"
- Joint probability: P(X = x, Y = y)
- Conditional probability: $P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$
- Bayes rule: P(X, Y) = P(X|Y)P(Y) = P(Y|X)P(X)
- Independent variables X, Y: P(X, Y) = P(X)P(Y)
- The difference between true and estimated probability distributions

Notation and Definitions

- \mathcal{V} is a finite set of (discrete) symbols (e.g., words or characters); $V = |\mathcal{V}|$
- \mathscr{V}^* is the (infinite) set of sequences of symbols from \mathscr{V}
- In language modeling, we imagine a sequence of random variables $X=\langle x_1,x_2,...,x_n\rangle$ that continues until $x_n=$ "[EOS]"
- \mathcal{V}^+ is the (infinite) set of sequences of \mathcal{V} symbols, with the last token $x_n=$ "[EOS]"
- LM problem: Estimate the probability of a sequence $P(X), X \in \mathcal{V}^+$

Language Modeling Problem

- Input: training data a sequence $X = \langle x_1, x_2, ..., x_n \rangle \in \mathcal{V}^+$
 - Sometimes it's useful to consider a collection of training sentences, each in \mathcal{V}^+ , but it complicates notation.
- Output: $P: \mathcal{V}^+ \to \mathbb{R}$

$$P(X) = \prod_{i=1}^{I} P(x_i \mid x_1, \dots, x_{i-1})$$
Next Word Context

The big problem: How do we predict

$$P(x_i \mid x_1, \dots, x_{i-1})$$
 717

Shannon's Language Model

(Shannon 1950)

- First seriously formulated study on LM
- Information theory: how much information does English as a language convey?

One method of calculating the entropy // is by a series of approximations 7? F_1 , $F_2 > ' ' '$, which successively take more and more of the statistics of the language into account and approach H as a limit. F_N may be called the N-gram entropy; it measures the amount of information or entropy due to statistics extending over N adjacent letters of text. F_N is given by

$$FN = -\sum_{i,j} p(b_i, j) \log_2 p_{b_i}(j)$$

$$= -\sum_{i,j} p(b_i, j) \log_2 p(b_i, j) + \sum_i p(b_i) \log p(b_i)$$
(1)

in which: bi is a block of N-1 letters [(N-1)-gram]

j is an arbitrary letter following b_i $p(b_i, j) \text{ is the probability of the } N\text{-gram } b_i, j$ $p_{b_i}(j) \text{ is the conditional probability of letter } j \text{ after the block } b_i,$

and is given by
$$p(b_i, j)/p(b_i)$$
.

The equation (1) can be interpreted as measuring the average uncertainty (conditional entropy) of the next letter I when the preceding I-1 letters are known. As I is increased, I-1 includes longer and longer range statistics and the entropy, II, is given by the limiting value of I-1 increased.

$$H = \lim_{N \to \infty} F_N \,. \tag{2}$$

What Can we Do w/ LMs?

• Score sentences, e.g., P(X = "Jane went to the store"):

```
Jane went to the store . → high store to Jane went the . → low (same as calculating loss for training)
```

Generate sentences:

while didn't choose end-of-sentence symbol, i.e., [EOS]: calculate probability $P(\text{Next Word} \mid \text{Context})$ sample a new word from the probability distribution

N-gram Language Models

Review: Count-based Unigram Model

• Independence assumption: $P(x_i|x_1,\ldots,x_{i-1})\approx P(x_i)$

 Maximum-likelihood estimation (MLE): counting how likely each word appearing in a corpus

$$P_{\text{MLE}}(x_i) = \frac{c_{\text{train}}(x_i)}{\sum_{\tilde{x}} c_{\text{train}}(\tilde{x})}$$

Interpolation w/ UNK model:

$$P(x_i) = (1 - \lambda_{\text{unk}}) * P_{\text{MLE}}(x_i) + \lambda_{\text{unk}} * P_{\text{unk}}(x_i)$$

From Unigram to Bigram LM

Next word prediction only depends on the previous word.

$$P(x_i|x_{i-n+1},\ldots,x_1) \approx P(x_i|x_{i-1})$$

Given a training corpus of 3 sentences:

```
<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>
```

• Compute the bigram probability by counting (MLE):

$$P(I | ~~) = \frac{2}{3} = .67~~$$
 $P(Sam | ~~) = \frac{1}{3} = .33~~$ $P(am | I) = \frac{2}{3} = .67$ $P(| Sam) = \frac{1}{2} = 0.5$ $P(Sam | am) = \frac{1}{2} = .5$ $P(do | I) = \frac{1}{3} = .33$

 Probability of a sentence is just the product of all bigram probabilities in this sentence.

Higher-order n-gram Models

Limit context length to n

$$P(x_i|x_{i-n+1},...,x_1) \approx P(x_i|x_{i-n+1},...,x_{i-1})$$

Maximum likelihood estimation: count, and divide

$$P_{ML}(x_i \mid x_{i-n+1}, \dots, x_{i-1}) := \frac{c(x_{i-n+1}, \dots, x_i)}{c(x_{i-n+1}, \dots, x_{i-1})}$$

P(example | this is an) =
$$\frac{c(this is an example)}{c(this is an)}$$

 Add smoothing by linear interpolation with (n-1)-gram LM, to deal with zero counts:

$$P(x_i \mid x_{i-n+1}, \dots, x_{i-1}) = \lambda P_{ML}(x_i \mid x_{i-n+1}, \dots, x_{i-1}) + (1 - \lambda)P(x_i \mid x_{1-n+2}, \dots, x_{i-1})$$

Smoothing for words in unknown context

Add-one smoothing, i.e., every word adds 1 count.

$$P(x_i) = \frac{\operatorname{count}(x_i)}{N}$$

$$P(x_i) = \frac{\operatorname{count}(x_i) + 1}{N + V}$$

 Add smoothing by linear interpolation with (n-1)-gram LM, to deal with zero counts:

$$P(x_i \mid x_{i-n+1}, \dots, x_{i-1}) = \lambda P_{ML}(x_i \mid x_{i-n+1}, \dots, x_{i-1}) + (1 - \lambda)P(x_i \mid x_{1-n+2}, \dots, x_{i-1})$$

More Smoothing Methods

(e.g. Goodman 1998)

Additive/Dirichlet:

fallback distribution

$$P(x_i \mid x_{i-n+1}, \dots, x_{i-1}) := \frac{c(x_{i-n+1}, \dots, x_i) + \alpha P(x_i \mid x_{i-n+2}, \dots, x_{i-1})}{c(x_{i-n+1}, \dots, x_{i-1}) + \alpha}$$
interpolation hyperparameter

Discounting:

discount hyperparameter

$$P(x_i|x_{i-n+1},\ldots,x_{i-1}) := \frac{c(x_{i-n+1},\ldots,x_i) - d + \alpha P(x_i|x_{i-n+2},\ldots,x_{i-1})}{c(x_{i-n+1},\ldots,x_{i-1})}$$

interpolation calculated by sum of discounts $\alpha = \sum_{i=1}^{n} x_i$

$$\alpha = \sum_{\{\tilde{x}; c(x_{i-n+1}, \dots, \tilde{x}) > 0\}} \alpha$$

Kneser-Ney: discounting w/ modification of the lower-order distribution

Problems and Solutions?

• Cannot share strength among similar words

she bought a car she bought a bicycle she purchased a car she purchased a bicycle

- → solution: class based language models
- Cannot condition on context with intervening words

Dr. Jane Smith Dr. Gertrude Smith

- → solution: skip-gram language models
- Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet for programming class he wanted to buy his own computer

→ solution: cache, trigger, topic, syntactic models, etc.

Neural Language Model

—Beyond Linear Models

Linear Models can't Learn Feature Combinations

```
students take tests → high teachers take tests → low students write tests → low teachers write tests → high
```

- These can't be expressed by linear features
- What can we do?
 - Remember combinations as features (individual scores for "students take", "teachers write")
 - → Feature space explosion!
 - Neural networks!

Neural Language Models

- Convert the word prediction problem to discriminative text classification
- The input is the n-1 previous words (context)
- The output is a word in the vocabulary (V-class classification)

$$P(x_i|x_{i-n+1},\ldots,x_{i-1}) = \text{Softmax}(\text{NeuralNet}(x_{i-n+1},\ldots,x_{i-1}))$$

Feed-forward Neural Language Models

Example of Combination Features

- Word embeddings capture features of words
 - e.g. feature 1 indicates verbs, feature 2 indicates determiners
- A row in the weight matrix (together with the bias) can capture particular combinations of these features
 - e.g. the 34th row in the weight matrix looks at feature 1 in the second-to-previous word, and feature 2 in the previous word

Where is Strength Shared?

Tying Input/Output Embeddings

Want to try? Delete the input embeddings W₀, and instead pick a row from the output matrix W₂.

What Problems are Handled?

Cannot share strength among similar words

she bought a car she purchased a car

she bought a bicycle she purchased a bicycle

→ solved, and similar contexts as well! <=>

Cannot condition on context with intervening words

Dr. Jane Smith Dr. Gertrude Smith

- → solved! w
- Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet for programming class he wanted to buy his own computer

→ not solved yet <</p>

Many Other Potential Designs!

- Neural networks allow design of arbitrarily complex functions!
- In future classes, we can replace Feedforward models by more powerful sequential NNs:
 - Recurrent neural network LMs
 - Transformer LMs

When to Use n-gram Models?

- Neural language models (next) achieve better performance, but
- n-gram models are extremely fast to estimate/apply
- n-gram models can be better at modeling lowfrequency phenomena
- Toolkit: kenlm

https://github.com/kpu/kenlm

Comparison Between N-gram LM and Neural LMs

N-gram LM

(Nonparametric Modeling)

ullet Count: Build a table of all possible prefix contexts and their counts from the training corpus ${\mathcal D}$

	Prefix Context	Next Word	Count
-	$x_{i-n+1}, \cdots, x_{i-2}, x_{i-1}$	x_i	$c(x_{i-n+1},\cdots,x_i)$
$O(\mathcal{D})$			
$O(\mathcal{D})$ Corpus size			
SE SOCIETATION AND SECURITION AND SE			
•			

N-gram LM

(Nonparametric Modeling)

- •Retrieve: How to compute $P(x_i|x_{i-n+1},\cdots,x_{i-1})$?
 - Retrieve all rows that match the prefix
 - Divide the count of $(x_{i-n+1}, \cdots, x_{i-1}, x_i)$ by the sum of counts of all retrieved rows

$$P(x_i|x_{i-n+1},\cdots,x_{i-1})pprox rac{c(x_{i-n+1},\cdots,x_{i-1},x_i))}{\sum_{x'\in\mathcal{V}}c(x_{i-n+1},\cdots,x_{i-1},x')}$$
 Corpus

Prefix Context	Mext Word	Count
$x_{i-n+1}, \cdots, x_{i-2}, x_{i-1}$	x_i	$c(x_{i-n+1},\cdots,x_i)$

Count-based Language Modeling

Count & Retrieve!

Neural Language Model

(Bengio et al. 2003)

 Non-parametric to parametric: We replace a count table with a neural network to approximate the next-word prediction probability:

$$P_{\theta}(x_i|x_{i-n+1},\cdots,x_{i-1}) = \operatorname{Softmax}(\operatorname{NeuralNet}(x_{i-n+1},\cdots,x_{i-1}))$$
 θ is the LM parameter

 Training: Use SGD to optimize the network by minimizing the negative log-likelihood of next word prediction

$$\mathcal{L}_{\text{nll}}(\theta) = -\mathbb{E}_{x_i|x_{< i}} \log P_{\theta}(x_i|x_{i-n+1}, \cdots, x_{i-1})$$

Sample a pair of (prefix context, next word) from a large corpus

Neural LM v.s. Count LM

- A neural LM learns to count, but also learns to compress
 - Learning is *not* simply counting
 - Neural nets *memorize* texts but also *generalize*
 - Similar text inputs are clustered to save *no. of bits*
 - Similarity is implicitly imposed by similarity between *prefix context* and *next word*

Example:

- Training examples
 - Peter and Mary have two cars.
 - There are four cars on the road.
 - The parking lots have four automobiles.
- Q: How likely is "automobiles" followed by "two"?

Neural LM learns to count & compress

Neural LM generalizes by compressing the no. of rows

Non-parametric

- Memorize low-frequency pairs of (prefix, next word)
- Cannot generalize to unseen pairs
- Interpretable & easy for incremental updates (insert/delete/replace)

Parametric

- Learning from data-driven training
- Good generalization to unseen pairs
- Black-box & expensive for parameter updates with forgetting issues

What makes LLM so powerful?

Advances from neural network architecture:

- Scale up the size of model parameters to 100B+

MLP RNN Transformer

What makes LLM so powerful?

- Pre-training on massive raw texts (and even images) in 100+ languages
 - BERT, GPT-4, PaLM, T5, LLaMA, ...
- Fine-tuning on language instructions with supervised learning or RL with human feedback
 - ChatGPT, Bard, FlanT5, Alpaca, ...

LM Evaluation

Evaluation of LMs

Log-likelihood:

$$LL(\mathcal{D}_{\text{test}}) = \sum_{X \in \mathcal{D}_{\text{test}}} \log P(X)$$

Per-word Log Likelihood:

$$WLL(\mathcal{D}_{ ext{test}}) = \frac{1}{\sum_{X \in \mathcal{D}_{ ext{test}}} |X|} \sum_{X \in \mathcal{D}_{ ext{test}}} \log P(X)$$

Per-word (Cross) Entropy:

$$H(\mathcal{D}_{\text{test}}) = \frac{1}{\sum_{X \in \mathcal{D}_{\text{test}}} |X|} \sum_{X \in \mathcal{D}_{\text{test}}} -\log_2 P(X)$$

Perplexity:

$$ppl(\mathcal{D}_{\text{test}}) = 2^{H(\mathcal{D}_{\text{test}})} = e^{-WLL(\mathcal{D}_{\text{test}})}$$

Unknown Words

- Necessity for UNK words
 - We won't have all the words in the world in training data
 - Larger vocabularies require more memory and computation time
- Common ways:
 - Limit vocabulary by frequency threshold (usually UNK <= 1) or rank threshold
 - Model characters or subwords

Evaluation and Vocabulary

- Important: the vocabulary must be the same over models you compare
- Or more accurately, all models must be able to generate the test set (it's OK if they can generate more than the test set, but not less)
 - e.g. Comparing a character-based model to a word-based model is fair, but not vice-versa

LM Problem Definition
Count-based LMs
Evaluating LMs

Log-linear LMs
Neural Net Basics
Feed-forward NN LMs

Questions?