CS769 Advanced NLP

Word Embeddings and Text Classification

Junjie Hu

Slides adapted from Noah, Yulia https://junjiehu.github.io/cs769-fall25/

Goals for Today

- Lexical Semantics and Distributional Semantics
- Word Embeddings (e.g., Skip-gram, CBOW)
- Evaluation (intrinsic and extrinsic)
- Text Classification

How should we represent the meaning of the word?

Lexical Semantics

- How should we represent the meaning of the word?
 - Words, lemmas, senses, definition

lemma sense definition

pepper, n.

Pronunciation: Brit. /'pspə/, U.S. /'pspər/

Forms: OE peopor (rare), OE pipcer (transmission error), OE pipor, OF pipur (rare Frequency (in current use):

Etymology: A borrowing from Latin Etymon: Latin piper.
< classical Latin piper, a loanword < Indo-Aryan (as is ancient Greek πέπερι); compare Sa

I. The spice of the plant.

a. A hot pungent spice derived from the prepared fruits (peppercorns) of the pepper plant, *Piper nigrum* (see sense 23), used from early times to season food, either whole or ground to powder (often in association with salt). Also (locally, chiefly with distinguishing word): a similar spice derived from the fruits of certain other species of the genus *Piper*; the fruits themselves.

The ground spice from *Piper nigrum* comes in two forms, the more pungent *black pepper*, produced from black peppercorns, and the milder *white pepper*, produced from white peppercorns: see BLACK *adj.* and *n.* Special uses 7b(a).

a. The plant *Piper nigrum* (family Piperaceae), a climbing shrub indigenous to South Asia and also cultivated elsewhere in the tropics, which has alternate starked entire leaves, with pendulous spikes of small green flowers opposite the leaves, succeeded by small berries turning red when ripe. Also more widely: any plant of the genus *Piper* or the family Piperaceae

(b. Usu. with distinguishing word: any of numerous plants of other families having hot pungent fruits or leaves which resemble pepper (1a) in taste and in some cases are used as a substitute for it.

c. V.S. The California pepper tree, Schinus molle. Cf. PEPPER TREE n. 3.

3. Any of various forms of capsicum, esp. *Capsicum annuum* var. *annuum*. Originally (chiefly with distinguishing word): any variety of the *C. annuum* Longum group, with elongated fruits having a hot, pungent taste, the source of cayenne, chilli powder, paprika, etc., or of the perennial *C. frutescens*, the source of Tabasco sauce. Now frequently (more fully **sweet pepper**): any variety of the *C. annuum* Grossum group, with large, bell-shaped or apple-shaped, mild-flavoured fruits, usually ripening to red, orange, or yellow and eaten raw in salads or cooked as a vegetable. Also: the fruit of any of these capsicums.

Sweet peppers are often used in their green immature state (more fully *green pepper*), but some new varieties remain green when ripe.

Oxford English Dictionary: https://www.oed.com/

Lemma pepper

- Sense 1: spice from pepper plant
- Sense 2: the pepper plant itself
- Sense 3: another similar plant (Jamaican pepper)
- Sense 4: plant with peppercorns (California pepper)
- Sense 5: capsicum (i.e., chili, paprika, bell pepper, etc)

Lexical Semantics

- How should we represent the meaning of the word?
 - Words, lemmas, senses, definition
 - Relationships between words or senses
 - 1. Synonymity: same meaning, e.g., couch/sofa
 - 2. Antonymy: opposite senses, e.g., hot/cold
 - 3. Similarity: similar meanings, e.g., car/bicycle
 - 4. Relatedness: association, e.g., car/gasoline
 - Superordinate/Subordinate: e.g., car/vehicle, mango/ fruit

Lexical Semantics

- How should we represent the meaning of the word?
 - Words, lemmas, senses, definition
 - Relationships between words or senses
 - Taxonomy: abstract -> concrete

Taxonomy

abstract -> concrete

Superordinate Basic Subordinate

Lexical Semantics

- How should we represent the meaning of the word?
 - Words, lemmas, senses, definition
 - Relationships between words or senses
 - Taxonomy: abstract -> concrete
 - Semantic frames and roles

Semantic Frame

- A set of words that denote perspectives or participants in an event
 - Tom brought a book from Bill.

buyer event from the perspective of the buyer

Bill sold a book to Tom.

seller event from the perspective of the seller

Mismatch

- Theories of language tend to view the data (words, sentences, documents) and abstractions over it as symbolic or categorical.
 - Uses symbols to represent linguistic information

- Machine learning algorithms built on optimization rely more on continuous data.
 - Uses floating-point numbers (vectors)

Problems with Discrete Representations

- Too coarse: expert ↔ skillful
- Sparse
- Subjective
- Expensive
- Hard to compute word relationships

One-hot vector:

Distributional Hypothesis

"The meaning of a word is its use in the language"

[Wittgenstein 1943]

"You shall know a word by the company it keeps"

[Firth 1957]

"If A and B have almost identical environments we say that they are synonyms."

[Harris 1954]

Example

- What does "Ong Choy" mean?
 - Suppose you see these sentences:
 - Ong Choy is delicious sautéed with garlic
 - Ong Choy is superb over rice
 - Ong Choy leaves with salty sauces
 - And you've also seen these:
 - ... water spinach sautéed with garlic over rice
 - Chard stems and leaves are delicious
 - Collard greens and other salty leafy greens

Ong Choy ≈ "Water Spinach"?

 Ong Choy is a leafy green like spinach, chard, or collard greens

Ong Choy: pronunciation of "蕹菜" in Cantonese

Model of Meaning Focusing on Similarity

- Each word = a vector
 - Similar words are "nearby in space"
 - the standard way to represent meaning in NLP

```
not good
                                                               bad
       by
                                                    dislike
to
                                                                    worst
                                                    incredibly bad
that
        now
                       are
                                                                      worse
                 vou
 than
          with
                                           incredibly good
                              very good
                      amazing
                                          fantastic
                                                    wonderful
                  terrific
                                       nice
                                      good
```

Distributed Word Embeddings

Word Vector Models

- These models are designed to "guess" a word at position i given a word at a position in $\{i-w,\ldots,i-1\}\cup\{i+1,\ldots,i+w\}$
- "Pre-train" word vectors are used in other larger models (e.g., neural LM)

Word2vec

- Continuous bag of words (CBOW): $p(v \mid c)$
 - Similar to feedforward neural LM w/o the feedforward layers in Lecture 3.
- Skip-gram: $p(c \mid v)$

19

Predict vs Count

the cat sat on the mat

Skip-gram

$$w_{t-2} = < start_{-2} >$$
 $w_{t-1} = < start_{-1} >$
 $w_{t+1} = cat$
 $w_{t+2} = sat$

Predict vs Count

the cat sat on the mat

Skip-gram

$$w_{t-2} = \langle \text{start}_{-1} \rangle$$
 $w_{t-1} = \text{the}$
 $w_{t+1} = \text{sat}$
 $w_{t+2} = \text{on}$

Predict vs Count

the cat <u>sat</u> on the mat

Skip-gram

$$w_{t-2} = \text{the}$$
 $w_{t-2} = \text{cat}$
 $w_{t-1} = \text{cat}$
 $w_{t+1} = \text{on}$
 $w_{t+2} = \text{the}$

Predict vs Count

the cat sat on the mat

Skip-gram

$$w_{t-2} = \text{cat}$$
 $w_{t-1} = \text{sat}$
 $w_{t+1} = \text{the}$
 $w_{t+2} = \text{mat}$

Predict vs Count

the cat sat on the mat

Skip-gram

$$w_{t-2} = \text{sat}$$
 $w_{t-2} = \text{on}$
 $w_{t-1} = \text{on}$
 $w_{t+1} = \text{mat}$
 $w_{t+2} = < \text{end}_{t+1} >$

Predict vs Count

Skip-gram

$$w_{t-2} = \text{on}$$
 $w_{t-1} = \text{the}$
 $w_{t+1} = \langle \text{end}_{+1} \rangle$
 $w_{t+2} = \langle \text{end}_{+2} \rangle$

 The same word can appear in different context.

context size = 2

PROJECTION

w(t-2)

w(t+1)

w(t+2)

Skip-gram

Skip-gram Objective

For each word in the corpus

$$J(\Theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m, j \ne 0} p(w_{t+j}|w_t; \Theta)$$

$$J(\Theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log p(w_{t+j} | w_t; \Theta)$$

Maximize the probability of any context window given the current center word

Skip-gram Objective

For each word in the corpus

$$J(\Theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log p(w_{t+j} | w_t; \Theta)$$

$$p(w_{t+j}|w_t) = p(o|c) = \frac{\exp(u_o^\top v_c)}{\sum_{i=1}^V \exp(u_i^\top v_c)}$$
 vectors

dot product
(similarity)
between outside
and center word
vectors

Notation simplification:

o = index of outside (context) word

 $c = index of center word (w_t)$

V = vocab size, V can be large 50K - 30M

Skip-gram w/ negative sampling

V=50K-30M, too large!

$$p(w_{t+j}|w_t) = p(o|c) = \frac{\exp(u_o^{\top} v_c)}{\sum_{i=1}^{V} \exp(u_i^{\top} v_c)}$$

- Negative sampling:
 - Treat the center word and a neighboring context word as positive examples.
 - Randomly sample other words in the lexicon to get negative samples.

(banking, regulation)

(banking, aardvark)

Skip-gram w/ negative sampling

 Convert the task to binary classification rather than multiclass:

$$P(o \mid c) = \frac{\exp(u_o^T v_c)}{\sum\limits_{i=1}^{V} \exp(u_i^T v_c)} \longrightarrow P(o \mid c) = \frac{1}{1 + \exp(-u_o^T v_c)} = \sigma(u_o^T v_c)$$

 New objective (single context word, k negative samples):

$$\log P(o_+ \mid c) + \sum_{i=1}^k \log(1 - P(o_i \mid c))$$

Choosing negative samples

- Pick negative samples according to unigram frequency P(w)
- More common to choose according to:

$$P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w} count(w)^{\alpha}}$$

- $\alpha = 0.75$ works well empirically
- Gives rare words slightly higher probability
 - e.g., P(a) = 0.99, P(b) = 0.01

$$P_{\alpha}(a) = \frac{0.99^{0.75}}{0.99^{0.75} + 0.01^{0.75}} = 0.97$$

$$P_{\alpha}(b) = \frac{0.01^{0.75}}{0.99^{0.75} + 0.01^{0.75}} = 0.03$$

Available dense embeddings

- Word2vec (Mikolov et a. 2013)
 - https://code.google.com/archive/p/word2vec/

- GloVe (Pennington et al. 2014)
 - http://nlp.stanford.edu/projects/glove/

- Fasttext (Bojanowsi et al. 2017)
 - http://www.fasttext.cc/

Evaluation

— how well do word vectors capture embedding similarity?

Evaluating word vectors

- Intrinsic evaluation: test whether the representations align with our intuitions about word meaning.
 - How well does cosine similarity of word embeddings correlate with human judgements?
 - Completing analogies: a:b <-> c: ?

- Extrinsic evaluation: test whether the representations are useful for downtream tasks, such as tagging, parsing, QA, ...
 - Provide embeddings as input to the same classifier, how well does a model w/ pre-trained embeddings perform?

A:B <-> C:?

Country and Capital Vectors Projected by PCA

A:B <-> C:?

Text Classification

Text Classification

- Classify sentences according to various traits
- Topic, sentiment, subjectivity/objectivity, etc.

```
I hate this movie ______ neutral negative
```

Example: Movie Review

 \equiv Menu

All ▼ Search IMDb

Predict sentiment from IMDB movie review:

{positive, neural, negative}

Some times nitpicking films and other media might be interesting to watch if the are some clever jokes made by the editor. Here, while some plot holes of certain films are revealed which I wouldn't even think of noticing and that's a good thing, there are some observations that are born from the poor imagination of the narrator and don't have anything to do with the certain media reviewed. Absolutely unfunny moments that don't even make me chuckle. At least the narrator's voice is OK and not like one of those annoying British accents from whatculture.

Code: https://colab.research.google.com/github/bentrevett/pytorch-sentiment-analysis/blob/master/1%20-%20Simple%20Sentiment%20Analysis.ipynb

Dataset: https://ai.stanford.edu/~amaas/data/sentiment/

Example: Customer Rating

Predict Amazon customer rating: {1, 2, 3, 4, 5}

★★★★★ Great batteries

Reviewed in the United States on March 23, 2019

Size: 100 Count | Verified Purchase

The batteries last forever. It's nice to have a huge box like this.

43 people found this helpful

Reviewed in the United States on May 24, 2018

Size: 48 Count Verified Purchase

I loved these batteries when I first started buying them. They were cheap and seemed to last. Then I bought 48! I figured - cheaper by the (4) dozen - Big mistake! Not only don't they hold a charge in a device, they are actually dead coming out of the shrink wrap. I actually had a couple literally fall apart in a camera. Luckily there was no damage. I expect high quality from Amazon basic products - they usually are great - but these batteries are terrible!.

854 people found this helpful

Customer reviews

412,923 global ratings

Generative and Discriminative Models

Generative vs. Discriminative Models

 Generative model: a model that calculates the probability of the input data itself

$$P(X)$$
 $P(X, y)$ stand-alone joint

 Discriminative model: a model that calculates the probability of the output given the input data

Application to Text Classification

 Generative text classification: Learn a model of the joint P(X, y), and find

$$\hat{y} = \arg\max_{y} P(X, y)$$

• **Discriminative text classification:** Learn a model of the conditional $P(y \mid X)$, and find

$$\hat{y} = \arg\max_{y} P(y|X)$$

Discriminative Text Classification

Why Discriminative Classifiers?

- Generative models are somewhat roundabout
 - → spend lots of capacity modeling the input
- Discriminative models directly model the probability of the output → what we care about
- However, discriminative models don't have an easy count-based decomposition!

BOW Generative:

$$P(X,y) = P(y) \prod_{i=1}^{|X|} P(x_i|y) = \frac{c(y)}{\sum_{\tilde{y}} c(\tilde{y})} \prod_{i=1}^{|X|} \frac{c(x_i,y)}{\sum_{\tilde{x}} c(\tilde{x},y)}$$

BOW Discriminative:

$$P(y|X) = \frac{P(y,X)}{P(X)}$$
 ?? Sentence space is infinite!

Discriminative Model Training

 Instead, define model that calculates probability directly based on parameters θ

$$P(y|X;\theta)$$

 Define a loss function that is lower if the model is better, such as negative log likelihood over training data

$$\mathcal{L}_{\text{train}}(\theta) = -\sum_{\langle X, y \rangle \in \mathcal{D}_{\text{train}}} \log P(y|X;\theta)$$

And optimize the parameters directly to minimize loss

$$\hat{\theta} = \operatorname*{argmin}_{\tilde{\theta}} \mathcal{L}_{\mathrm{train}}(\tilde{\theta})$$

Logistic Regression

 For binary classification of positive/negative, first calculate score

$$s_{y|X} = \theta_{y|X} \cdot \underline{f(X)}$$

Learn a feature extractor

Convert into a probability, e.g. using sigmoid function

$$P(y|X;\theta) = \text{sigmoid}(s_{y|X}) = \frac{1}{1 + e^{-s_{y|X}}} \int_{0.50}^{0.75} \frac{1}{1 + e^{-s_{y|X}}} \int_{0.00}^{0.75} \frac{1}{1 + e^{-s_{y|X}}} \frac{1}{1 + e^{-s_{y|X}}} \int_{0.00}^{0.75} \frac{1}{1 + e^{-s_{y|X}}} \frac{1}{1 +$$

• Learning: maximize log likelihood of training data

$$\mathcal{L}_{\text{train}}(\theta) = \sum_{\langle X, y \rangle \sim \mathcal{D}_{\text{train}}} \log P(y|X; \theta), \quad \theta^* = \arg \max_{\theta} \mathcal{L}(\theta)$$

Multi-class Classification: Softmax

- Sigmoid can be used for binary decisions
- For multi-class decisions, calculate score for each class and use softmax

$$P(y|X;\theta) = \frac{e^{s_{y|X}}}{\sum_{\tilde{y}} e^{s_{\tilde{y}|X}}}$$

$$s = \begin{pmatrix} -3.2 \\ -2.9 \\ 1.0 \\ 2.2 \\ 0.6 \end{pmatrix} \longrightarrow p = \begin{pmatrix} 0.002 \\ 0.003 \\ 0.329 \\ 0.444 \\ 0.090 \end{pmatrix}$$

. . .

Gradient Descent

 Calculate the gradient of the loss function with respect to the parameters

$$\frac{\partial \mathcal{L}_{\mathrm{train}}(\theta)}{\partial \theta}$$

- How? Use the chain rule more in later lectures.
- Update to move in a direction that decreases the loss

$$\theta \leftarrow \theta - \alpha \frac{\partial \mathcal{L}_{\text{train}}(\theta)}{\partial \theta}$$

- α is a **learning rate** dictating speed of movement
- This is the *first-order* gradient descent
- Others, e.g. Newton's method, consider second-order (curvature) information and converge more quickly

BOW Discriminative Model

• Use BOW representations for f(X)

$$s_{y|X} = \theta_y + \sum_{i=1}^{|X|} \theta_{y|x_i}$$

CBOW Discriminative Model

• Use CBOW representations for encoding a sentence f(X)

CBOW Discriminative Model

• Use CBOW representations for encoding a sentence f(X)

$$s_{y|X} = \theta_y + \sum_{i=1}^{|X|} \theta_{y|x_i}$$

Covert Scores to Probabilities

Using Softmax function

$$P(y|X;\theta) = \text{SoftMax}(s_{y|X}) = \frac{e^{s_{y|X}}}{\sum_{y' \in Y} e^{s_{y'|X}}}$$

Optimize by gradient descent with an regularization

$$\mathcal{L}_{\text{train}}(\theta) = \sum_{\langle X, y \rangle \sim \mathcal{D}_{\text{train}}} \log P(y|X; \theta) + \lambda \|\theta\|^2$$

Neural Network Discriminative Model

• Use neural network (e.g., LSTM) to learn features f(X)

$$s_{y|X} = NN(X)$$

Any Questions?