
CS769 Advanced NLP

Structure Prediction
Junjie Hu

Slides adapted from Graham
https://junjiehu.github.io/cs769-fall23/

1

https://junjiehu.github.io/cs769-fall23/

Goals for Today
• Problems of structure predictions w.r.t. sentence classification

• Locally (MLE) v.s. Globally normalized likelihood methods

• Structure perceptron (hinge loss with margin)

• Policy Gradient (REINFORCE)

• Other simpler solutions

Types of Prediction
• Two classes (binary classification)

I hate this movie positive

negative

• Multiple classes (multi-class classification)

• Exponential/infinite labels (structured prediction)
I hate this movie PRP VBP DT NN

I hate this movie kono eiga ga kirai

I hate this movie

very good

good

neutral

bad

very bad

Problem 1: Exposure Bias
• Teacher forcing assumes feeding correct previous input,

but at test time we may make mistakes that propagate

• Exposure bias: The model is not exposed to mistakes
during training, and cannot deal with them at test

I

classifyclassify

I I

I

classify

I

encoder I

classify

I

I

classify

I

Problem 2: Disregard to
Evaluation Metrics

• In the end, we want good outputs

• Good translations can be measured with metrics,
e.g. BLEU or METEOR

• Similarly, good responses to a query can be
measured by human preference

• Some mistaken predictions hurt more than others,
so we'd like to penalize them appropriately

Many Varieties of Structured Prediction!

• Models:
• RNN-based decoders

• Convolution/self attentional decoders

• CRFs w/ local factors

• Training algorithms:
• Maximum likelihood w/ teacher forcing

• Sequence level likelihood

• Structured perceptron, structured large margin

• Reinforcement learning/minimum risk training

• Sampling corruptions of data

Covered
already

Covered
today

Reminder: Globally
Normalized Models

• Locally normalized models: each decision made
by the model has a probability that adds to one

• Globally normalized models (a.k.a. energy-
based models): each sentence has a score, which
is not normalized over a particular decision

P (Y | X) =

|Y |Y

j=1

eS(yj |X,y1,...,yj�1)

P
ỹj2V eS(ỹj |X,y1,...,yj�1)

Globally Normalized
Likelihood

Difficulties Training Globally
Normalized Models

• Partition function problematic

• Two options for calculating partition function

• Structure model to allow enumeration via dynamic
programming, e.g. linear chain CRF, CFG

• Estimate partition function through sub-sampling
hypothesis space

Two Methods for
Approximation

• Sampling:
• Sample k samples according to the probability distribution

• + Unbiased estimator: as k gets large will approach true

distribution

• - High variance: what if we get low-probability samples?

• Beam search:
• Search for k best hypotheses

• - Biased estimator: may result in systematic differences from

true distribution

• + Lower variance: more likely to get high-probability outputs

Un-normalized Models:

Structured Perceptron

Normalization often Not
Necessary for Inference!

• At inference time, we often just want the best
hypothesis

Ŷ = argmax
Y

P (Y | X)
<latexit sha1_base64="UGuFTAHRm8opjMQBk8ESxdLvEfw=">AAACGXicbVDLSgMxFM34tr6qLt0Ei6CbMiOCuhBENy4rWK10SslkbttgkhmSO2IZxt9w46+4caHiUlf+jWntwteBwMk5997kniiVwqLvf3hj4xOTU9Mzs6W5+YXFpfLyyrlNMsOhzhOZmEbELEihoY4CJTRSA0xFEi6iq+OBf3ENxopEn2E/hZZiXS06gjN0UrschD2G+WVBD2iY6dhVwuCahwg3mDPTVeymKG5rm5c0VCKmja12ueJX/SHoXxKMSIWMUGuX38I44ZkCjVwya5uBn2LLzUbBJRSlMLOQMn7FutB0VDMFtpUPVyvohlNi2kmMOxrpUP3ekTNlbV9FrlIx7Nnf3kD8z2tm2Nlr5UKnGYLmXw91MkkxoYOcaCwMcJR9Rxg3wv2V8h4zjKPLqORCCH6v/JfUt6v71eB0p3J4NEpjhqyRdbJJArJLDskJqZE64eSOPJAn8uzde4/ei/f6VTrmjXpWyQ94758kuKEe</latexit><latexit sha1_base64="UGuFTAHRm8opjMQBk8ESxdLvEfw=">AAACGXicbVDLSgMxFM34tr6qLt0Ei6CbMiOCuhBENy4rWK10SslkbttgkhmSO2IZxt9w46+4caHiUlf+jWntwteBwMk5997kniiVwqLvf3hj4xOTU9Mzs6W5+YXFpfLyyrlNMsOhzhOZmEbELEihoY4CJTRSA0xFEi6iq+OBf3ENxopEn2E/hZZiXS06gjN0UrschD2G+WVBD2iY6dhVwuCahwg3mDPTVeymKG5rm5c0VCKmja12ueJX/SHoXxKMSIWMUGuX38I44ZkCjVwya5uBn2LLzUbBJRSlMLOQMn7FutB0VDMFtpUPVyvohlNi2kmMOxrpUP3ekTNlbV9FrlIx7Nnf3kD8z2tm2Nlr5UKnGYLmXw91MkkxoYOcaCwMcJR9Rxg3wv2V8h4zjKPLqORCCH6v/JfUt6v71eB0p3J4NEpjhqyRdbJJArJLDskJqZE64eSOPJAn8uzde4/ei/f6VTrmjXpWyQ94758kuKEe</latexit><latexit sha1_base64="UGuFTAHRm8opjMQBk8ESxdLvEfw=">AAACGXicbVDLSgMxFM34tr6qLt0Ei6CbMiOCuhBENy4rWK10SslkbttgkhmSO2IZxt9w46+4caHiUlf+jWntwteBwMk5997kniiVwqLvf3hj4xOTU9Mzs6W5+YXFpfLyyrlNMsOhzhOZmEbELEihoY4CJTRSA0xFEi6iq+OBf3ENxopEn2E/hZZiXS06gjN0UrschD2G+WVBD2iY6dhVwuCahwg3mDPTVeymKG5rm5c0VCKmja12ueJX/SHoXxKMSIWMUGuX38I44ZkCjVwya5uBn2LLzUbBJRSlMLOQMn7FutB0VDMFtpUPVyvohlNi2kmMOxrpUP3ekTNlbV9FrlIx7Nnf3kD8z2tm2Nlr5UKnGYLmXw91MkkxoYOcaCwMcJR9Rxg3wv2V8h4zjKPLqORCCH6v/JfUt6v71eB0p3J4NEpjhqyRdbJJArJLDskJqZE64eSOPJAn8uzde4/ei/f6VTrmjXpWyQ94758kuKEe</latexit>

• If that's all we need, no need for normalization!

Structured Perceptron Algorithm
• An extremely simple way of training (non-probabilistic) global models

• Find the one-best output according to the model score, and if its score is better
than the correct answer, update parameters to fix this

• The one-best output may not be as good as the correct answer, but scores
higher! We should update models to either decrease its score or increase the
correct answer’s score.

Ŷ = argmaxỸ 6=Y S(Ỹ | X; ✓)

if S(Ŷ | X; ✓) � S(Y | X; ✓) then

✓ ✓ + ↵(@S(Y |X;✓)
@✓ � @S(Ŷ |X;✓)

@✓)

end if

Find one best
If score better

than reference
Increase score

of ref, decrease

score of one-best

(here, SGD update)

Structured Perceptron Loss
• Structured perceptron can also be expressed as a

loss function!
`percept(X,Y) = max(0, S(Ŷ | X; ✓)� S(Y | X; ✓))

• Resulting gradient looks like perceptron algorithm

• This is a normal loss function, can be used in NNs

• But! Requires finding the one-best by argmax in addition to
the true candidate: must do prediction during training

@`percept(X,Y ; ✓)

@✓
=

(
@S(Y |X;✓)

@✓ � @S(Ŷ |X;✓)
@✓ if S(Ŷ | X; ✓) � S(Y | X; ✓)

0 otherwise

Contrasting Perceptron and
Global Normalization

• Globally normalized probabilistic model 
 

• Structured perceptron 
 

• Global structured perceptron? 
 
 

• Same computational problems as globally normalized
probabilistic models

`percept(X,Y) = max(0, S(Ŷ | X; ✓)� S(Y | X; ✓))

`global(X,Y ; ✓) = � log
eS(Y |X)

P
Ỹ eS(Ỹ |X)

`global-percept(X,Y) =
X

Ỹ

max(0, S(Ỹ | X; ✓)� S(Y | X; ✓))

Structured Training 
and Pre-training

• Neural network models have lots of parameters and a
big output space; training is hard

• Tradeoffs between training algorithms:

• Selecting just one negative example is inefficient

• Teacher forcing efficiently updates all parameters,
but suffers from exposure bias

• Thus, it is common to pre-train with teacher forcing,
then fine-tune with more complicated algorithm

Hinge Loss and 
Cost-sensitive Training

Perceptron and Uncertainty
• Which is better, dotted or dashed?

• Both have zero perceptron loss!

Adding a “Margin” 
with Hinge Loss

• Penalize when incorrect answer is within margin m

Perceptron Hinge

`hinge(x, y; ✓) = max(0,m+ S(ŷ | x; ✓)� S(y | x; ✓))

Hinge Loss for Any
Classifier!

• We can swap cross-entropy for hinge loss anytime
I hate this movie<s> <s>

hinge

PRP VBP DT NN

hinge hinge hinge

loss = logsoftmax(score, answer)

↓

loss = hinge(score, answer, m=1)

e.g.

Cost-augmented Hinge
• Sometimes some decisions are worse than others

• e.g. VB -> VBP mistake not so bad, VB -> NN
mistake much worse for downstream apps

• Cost-augmented hinge defines a cost for each
incorrect decision, and sets margin equal to this

`ca-hinge(x, y; ✓) = max(0, cost(ŷ, y) + S(ŷ | x; ✓)� S(y | x; ✓))

Costs over Sequences
• Zero-one loss: 1 if sentences differ, zero otherwise

• Hamming loss: 1 for every different element
(lengths are identical)

• Other losses: edit distance, 1-BLEU, etc.

costzero-one(Ŷ , Y) = �(Ŷ 6= Y)

costhamming(Ŷ , Y) =

|Y |X

j=1

�(ŷj 6= yj)

Structured Hinge Loss
• Hinge loss over sequence with the largest margin

violation
Ŷ = argmaxỸ 6=Y cost(Ỹ , Y) + S(Ỹ | X; ✓)

`ca-hinge(X,Y ; ✓) = max(0, cost(Ŷ , Y) + S(Ŷ | X; ✓)� S(Y | X; ✓))

• Problem: How do we find the argmax above?

• Solution: In some cases, where the cost can be
calculated easily, we can consider cost in search.

Cost-Augmented Decoding

for Hamming Loss

• Hamming loss is decomposable over each word

• Solution: add a score = cost to each incorrect choice during search

I hate this movie<s> <s>

NN

VBP

PRP

DT

…

0.5
-0.2
1.3
-2.0
…

+1
+1

+1

NN

Reinforcment Learning Basics:
Policy Gradient

(Review of Karpathy 2016)

What is Reinforcement
Learning?

• Learning where we have an

• environment X

• ability to make actions A

• get a delayed reward R

• Example of pong: X is our observed image, A is
up or down, and R is the win/loss at the end of the
game

Why Reinforcement
Learning in NLP?

• We may have a typical reinforcement learning
scenario: e.g. a dialog where we can make
responses and will get a reward at the end.

• We may have latent variables, where we decide
the latent variable, then get a reward based on
their configuration.

• We may have a sequence-level error function
such as BLEU score that we cannot optimize
without first generating a whole sentence.

Supervised MLE
• We are given the correct decisions 

 
 

• In the context of reinforcement learning, this is also called
“imitation learning,” imitating a teacher (although imitation
learning is more general)

`super(Y,X) = � logP (Y | X)

Self Training
• Sample (exploration) or argmax (exploitation)

according to the current model

Ŷ ⇠ P (Y | X) Ŷ = argmaxY P (Y | X)or
• Use this sample (or samples) to maximize likelihood

• No correct answer needed! But is this a good idea?

• One successful alternative: co-training, only use

sentences where multiple models agree (Blum and
Mitchell 1998)

• Another successful alternative: noising the input, to match
output (He et al. 2020)

`self(X) = � logP (Ŷ | X)

Policy Gradient/REINFORCE
• Markov decision process (MDP): defines the probability of transitioning

into a new state, getting a reward given the current state and the
execution of an action.

• Policy: is defined as the probability distribution of actions given a state in a
MDP

- Example, LLM is a policy over next tokens (actions) given a prefix
(state)

• RL objective: maximize the “expected” reward following a parametrized
policy (e.g., text generative models)

Policy Gradient/REINFORCE
• Markov decision process (MDP): defines the probability of transitioning into

a new state, getting a reward given the current state and the execution of
an action.

• Policy: is defined as a probability distribution of actions given a state in MDP

- Example: LLM is a policy over next tokens (actions) given a prefix
prompt (state)

LLM

Human

ResponseFeedback

Policy Gradient/REINFORCE
• RL objective: maximize expected rewards.

Here the policy is a parameterized text generative model

• Use stochastic gradient ascent to update model
parameters (for a maximization objective)

Policy Gradient/REINFORCE
• Rewrite the gradient of the policy as:

• Hence, the PG problem can also be rewritten as the
minimization of the following loss

Define this as a policy loss

Policy Gradient/REINFORCE
• Add a term that scales the loss by the reward

• Reward function: Outputs that get a bigger reward will get a higher weight

- If we only have labeled data , we can replace by , where
we can compare the semantic or lexical distance between the sampled output and the
human-reference output. Example: use the BLEU score

- Alternatively, we can ask for human feedback, and learn a reward model. Example:
ChatGPT learn a reward function from ranking of model outputs provided by human.

• Quiz: Under what conditions is the above loss equal to MLE?

• can be obtained by sampling or argmax (greedy decoding), in the same way as self-
training (c.f. exploration-exploitation trade-off).

Credit Assignment for
Rewards

• How do we know which action led to the reward?

• Best scenario, immediate reward: 
 

• Worst scenario, only at end of roll-out: 
 

• Often assign decaying rewards for future events to take into
account the time delay between action and reward

a1 a2 a3 a4 a5 a6
0 +1 0 -0.5 +1 +1.5

a1 a2 a3 a4 a5 a6
+3

Generic RL Framework for Text Generation

• Pretrain a policy model by self-supervised learning

• For each prefix :

- Sample a batch of output sequences

- Compute the reward of all sampled outputs

- Compute Policy Gradients , which is the
gradient of the negative log-likelihood weighted by
the reward

- Update the model parameters

Stabilizing Reinforcement
Learning

Problems w/ Reinforcement
Learning

• Like other sampling-based methods, reinforcement
learning is unstable

• It is particularly unstable when using bigger output
spaces (e.g. words of a vocabulary)

• A number of strategies can be used to stabilize

Adding a Baseline
• Basic idea: we have expectations about our reward

for a particular sentence

Reward
0.8
0.3

0.95
Baseline

0.1

R-B
-0.15
0.2

“This is an easy sentence”
“Buffalo Buffalo Buffalo”

• We can instead weight our likelihood by R-B to
reflect when we did better or worse than expected

`baseline(X) = �(R(Ŷ , Y)�B(Ŷ)) logP (Ŷ | X)

• (Be careful to not backprop through the baseline)

Calculating Baselines
• Choice of a baseline is arbitrary (often heuristics)

• Option 1: predict final reward using linear from current
state (e.g. Ranzato et al. 2016)

• Sentence-level: one baseline per sentence

• Decoder state level: one baseline per output action

• Option 2: use the mean of the rewards in the batch as
the baseline (e.g. Dayan 1990)

Increasing Batch Size
• Because each sample will be high variance, we

can sample many different examples before
performing update

• We can increase the number of examples (roll-outs)
done before an update to stabilize

• We can also save previous roll-outs and re-use
them when we update parameters (experience
replay, Lin 1993)

Warm-start
• Start training with maximum likelihood, then switch

over to REINFORCE

• Works only in the scenarios where we can run MLE
(not latent variables or standard RL settings)

• MIXER (Ranzato et al. 2016) gradually transitions from
MLE to the full objective

Proximal Policy Optimization (PPO)
• We do need warm-start (i.e., pre-training), and we also want

the updated model to be closed to the pre-trained checkpoint

• In addition to maximizing the reward, we add a regularization
term

Other Simpler Remedies to
Exposure Bias

What’s Wrong w/ 
Structured Hinge Loss?

• It may work, but…

• Considers fewer hypotheses, so unstable

• Requires decoding, so slow

• Generally must resort to pre-training (and even
then, it’s not as stable as teacher forcing w/ MLE)

Solution 1: Sample Mistakes in Training 
(Ross et al. 2010)

• DAgger, also known as “scheduled sampling”, etc., randomly
samples wrong decisions and feeds them in 
 
 
 
 
 
 
 
 
 

• Start with no mistakes, and then gradually introduce them using
annealing

PRP

loss

NN

samp

VBP

loss

VB

samp

DT

loss

DT

samp

NN

loss

NN

samp

I hate this movie<s> <s>

score score score score

Solution 2:

Drop Out Inputs

• Basic idea: Simply don’t input the previous decision
sometimes during training (Gal and Ghahramani 2015) 
 
 
 
 
 
 

• Helps ensure that the model doesn’t rely too heavily on
predictions, while still using them

I hate this movie<s> <s>

classifier

PRP VBP DT NN

classifier classifier classifier

x x

Solution 3: 
Corrupt Training Data

• Reward augmented maximum likelihood (Nourozi et al. 2016)

• Basic idea: randomly sample incorrect training data, train w/

maximum likelihood

• Sampling probability proportional to goodness of output

• Can be shown to approximately minimize risk

MLE
PRP NN DT NN

sample

I hate this movie

PRP VBP DT NN

Questions?

