CS769 Advanced NLP Prompting

Junjie Hu

Slides adapted from Pengfei, Graham https://junjiehu.github.io/cs769-fall24/

Goals for Today

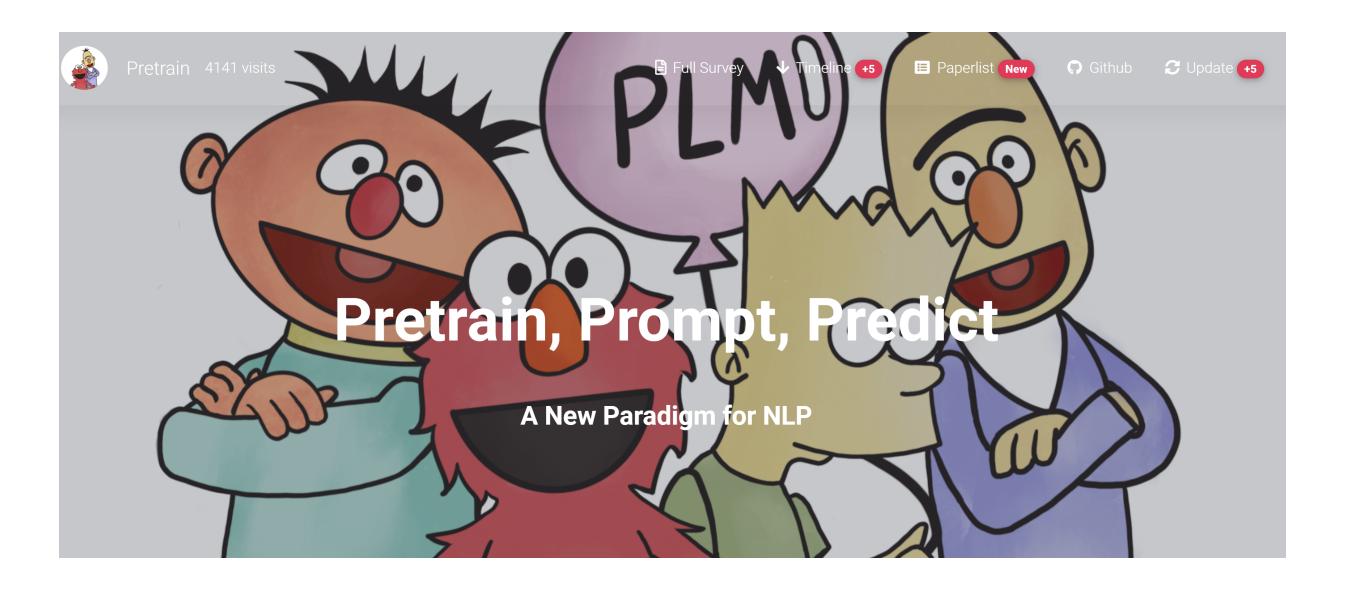
- Prompting vs other machine learning paradigms in NLP
- General Workflow of Prompting
- Key Components of Prompting
 - 1. Pre-trained Model Choice
 - 2. Prompt Engineering
 - 3. Answer Engineering
 - 4. Expanding the Paradigm
 - 5. Prompt-based Training Strategies

Recommended Reading

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing

Pengfei Liu Carnegie Mellon University pliu3@cs.cmu.edu Weizhe Yuan Carnegie Mellon University weizhey@cs.cmu.edu

Zhengbao Jiang Carnegie Mellon University zhengbaj@cs.cmu.edu Hiroaki Hayashi Carnegie Mellon University hiroakih@cs.cmu.edu



Jinlan Fu National University of Singapore jinlanjonna@gmail.com

> Graham Neubig Carnegie Mellon University gneubig@cs.cmu.edu

Four Paradigms of NLP Technical Development

- Feature Engineering
- Architecture Engineering
- Objective Engineering
- Prompt Engineering

Feature Engineering

- Paradigm: Fully Supervised Learning (Non-neural Network) • Time Period: Most popular through 2015
- Characteristics:

 - Non-neural machine learning models mainly used Require manually defined feature extraction

Representative Work:

 \square Manual features -> linear or kernelized support vector machine (SVM)

 \square Manual features -> conditional random fields (CRF)

Architecture Engineering

- Paradigm: Fully Supervised Learning (Neural Networks)
- Time Period: About 2013-2018
- Characteristics:
 - □ Rely on neural networks
 - LSTM v.s CNN)
 - Sometimes used pre-training of LMs, but often only for shallow features such as embeddings
- **Representative Work**: CNN/LSTM for Text Classification
 - □ Transformer for Machine Translation

Do not need to manually define features, but should modify the network structure (e.g.:

Objective Engineering

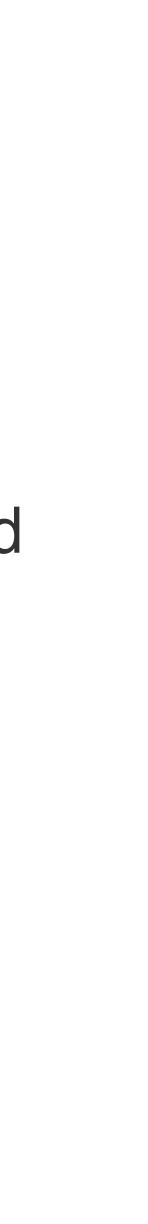
- Paradigm: Pre-train, Fine-tune
- Time Period: 2017-Now
- Characteristics:

deep features

Less work on architecture design, but engineer objective functions

- Typical Work:
 - BERT \rightarrow Fine Tuning

Pre-trained LMs (PLMs) used as initialization of full model - both shallow and



Prompt Engineering

- Paradigm: Pre-train, Prompt, Predict
- Date: 2019-Now
- Characteristic:

NLP tasks are modeled entirely by relying on LMs

given to the LM

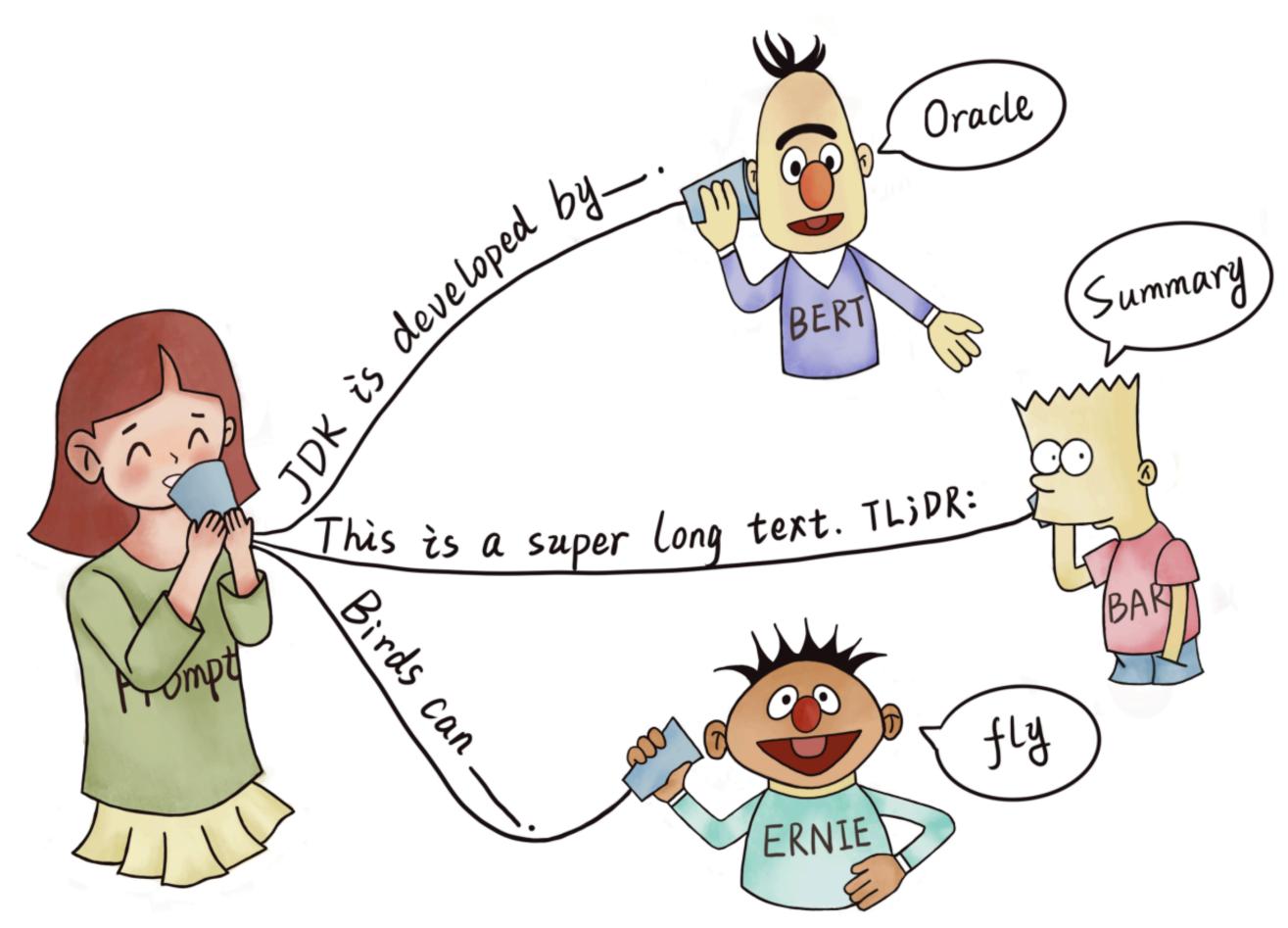
Engineering of prompts is required

Representative Work: □ GPT3, GPT4, ChatGPT

- The tasks of shallow and deep feature extraction, and prediction of the data are all

What is Prompting?

Encouraging a pre-trained model to make particular predictions by providing a "prompt" specifying the task to be done.



What is the general workflow of Prompting?

- Prompt Addition
- Answer Prediction
- Answer-Label Mapping

Prompt Addition

- two steps:

 - □ Fill in the input slot [x]

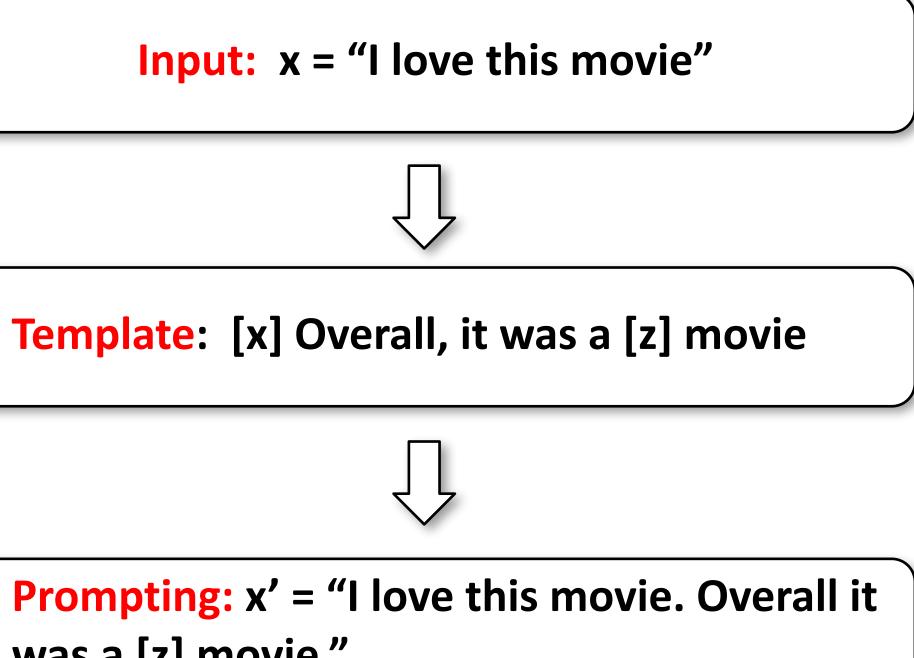
Prompt Addition: Given input x, we transform it into prompt x' through

 \Box Define a template with two slots, one for input [x], and one for the answer [z]

11

Example: Sentiment Classification

was a [z] movie."



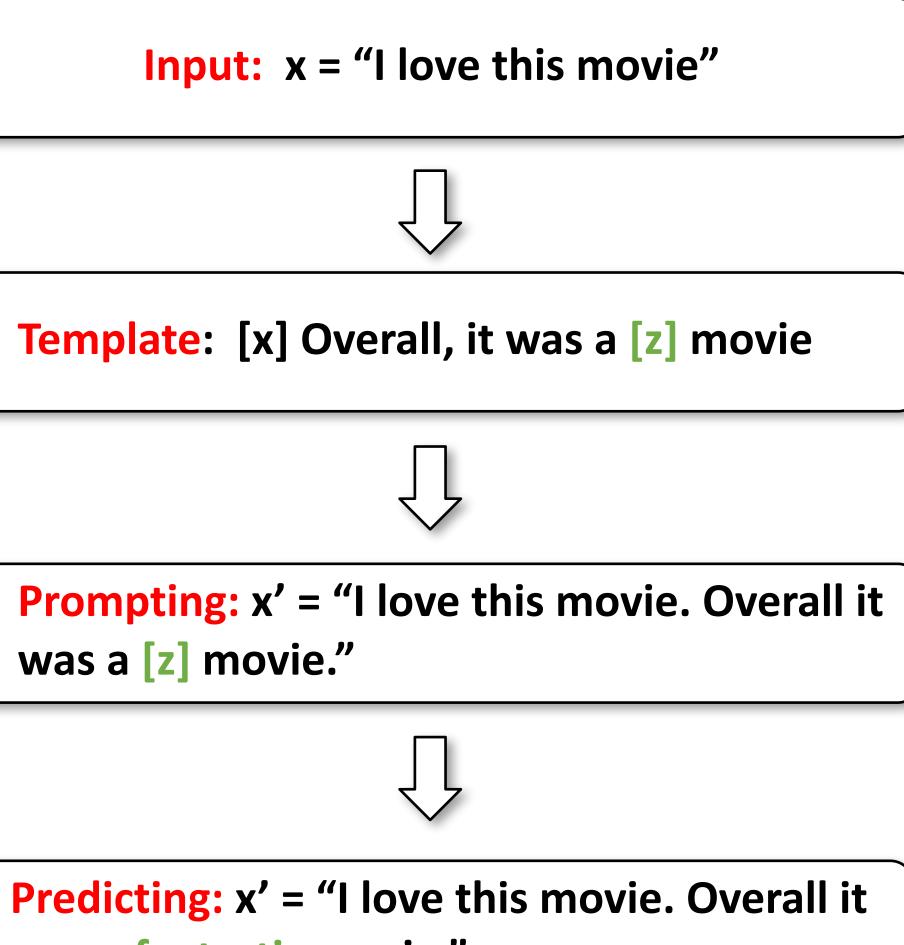
Answer Prediction

Answer Prediction: Given a prompt, predict the answer [z] □ Fill in [z]

was a [z] movie."

was a fantastic movie."

Example



14

Mapping

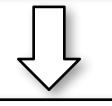
Mapping: Given an answer, map it into a class label

was a [z] movie."

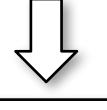
Predicting: x' = "I love this movie. Overall it was a fantastic movie."

Mapping: fantastic => Positive

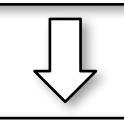
Example

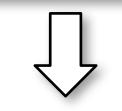


Template: [x] Overall, it was a [z] movie



Prompting: x' = "I love this movie. Overall it





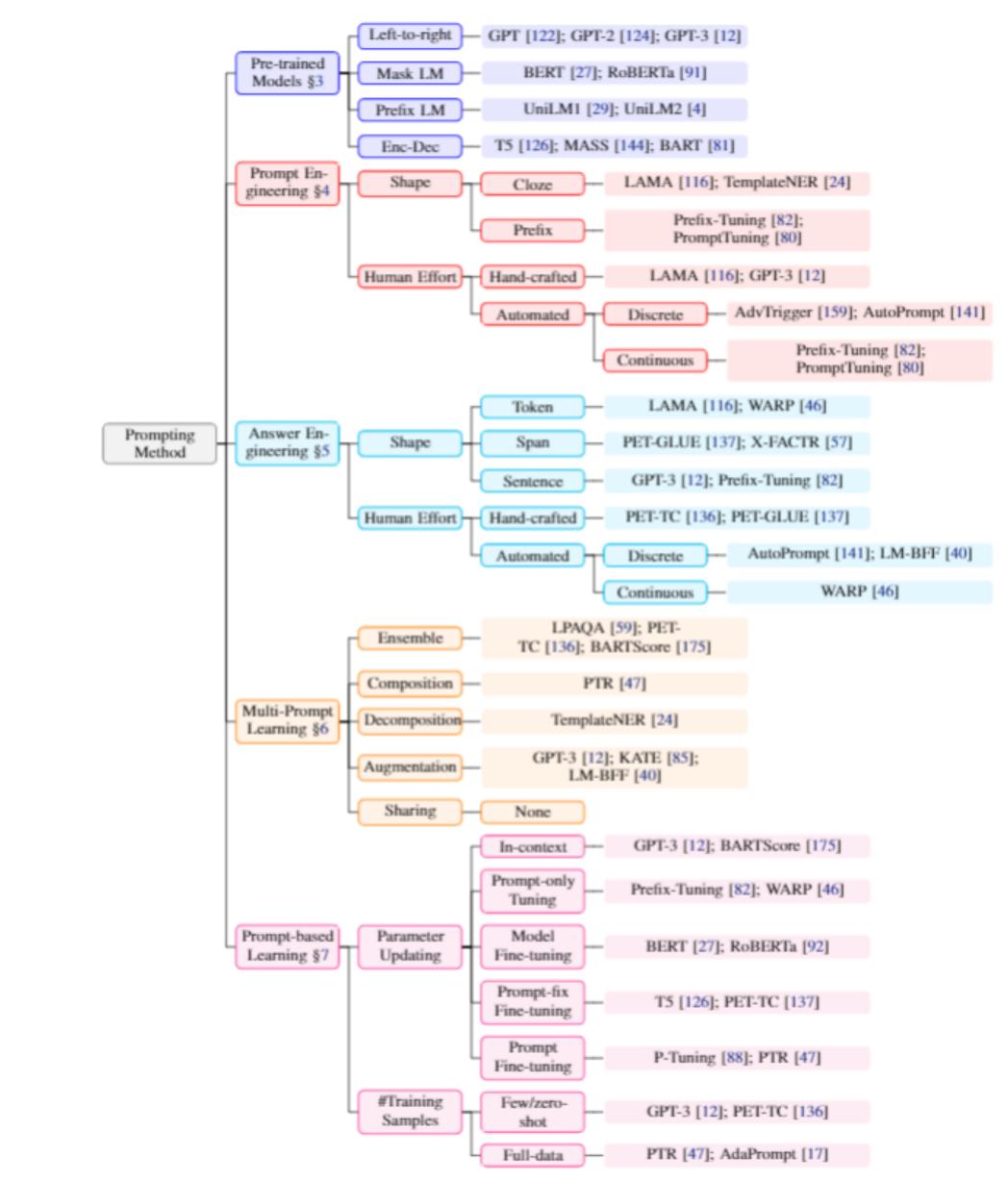
Types of Prompts

- Cloze Prompt: I love this movie. Overall it was a [z] movie
 Example outputs:
 - I love this movie. Overall it was a boring movie
 - I love this movie. Overall it was a fantastic movie
- Prefix Prompt: I love this movie. Overall this movie is [z]

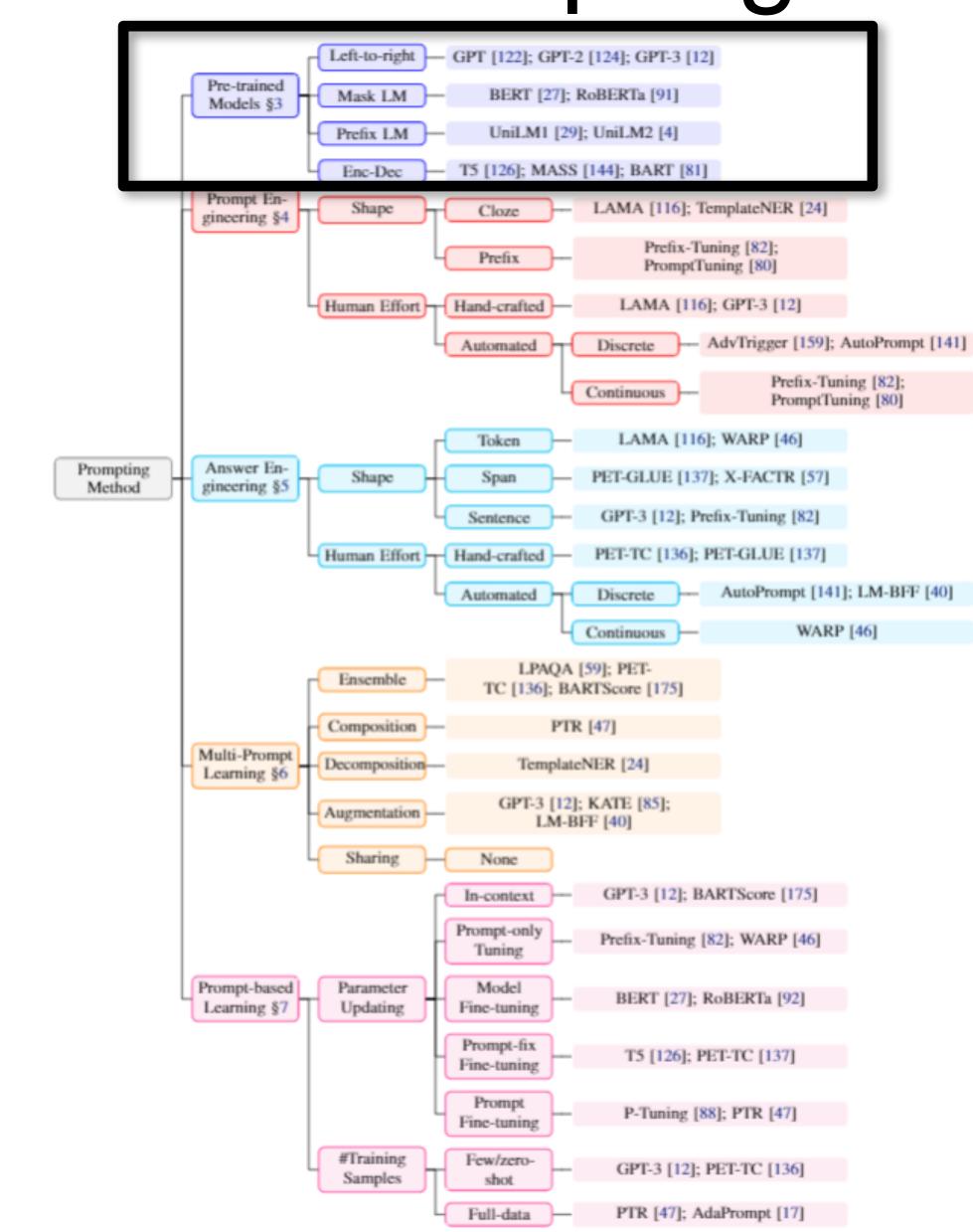
17

- Pre-trained Model Choice
- Prompt Template Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies

- Pre-trained Model Choice
- Prompt Template Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies



- Pre-trained Model Choice
- Prompt Template Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies



Popular Frameworks

- Left-to-Right) Autoregressive LM
- Masked LM
- Prefix LM
- Encoder-decoder LM

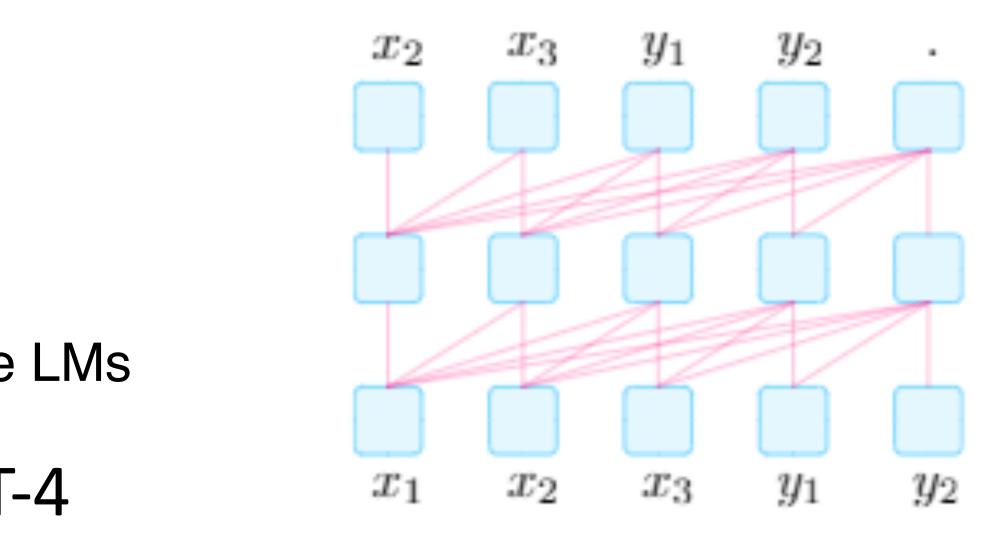
Pre-trained Language Models

21

(Left-to-right) Autoregressive Language Model

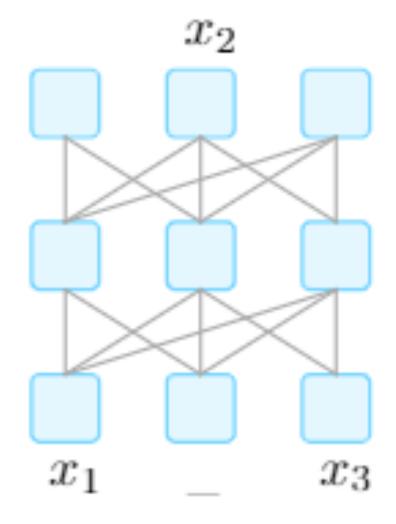
Characteristics:

- □ First proposed by Markov (1913)
- Count-based-> Neural network-based
- Specifically suitable to highly larger-scale LMs
- Example: GPT-1, GPT-2, GPT-3, GPT-4
- Roles in Prompting Methods
 - The earliest architecture chosen for prompting
 - Usually equipped with prefix prompt and the parameters of PLMs are fixed



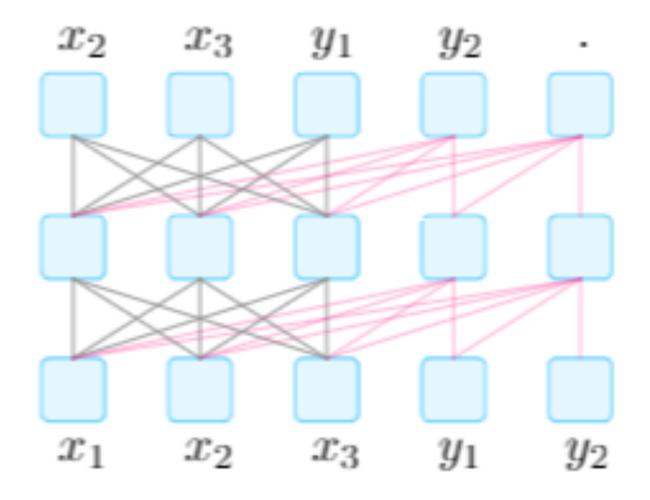
Masked Language Model

- Characteristics:
 - Unidirectional -> bidirectional prediction
 - Suitable for NLU tasks
- Example: □ BERT, ERNIE
- Roles in Prompting Methods Usually combined with Cloze prompt
 - Suitable for NLU tasks, which should be reformulated into a cloze task



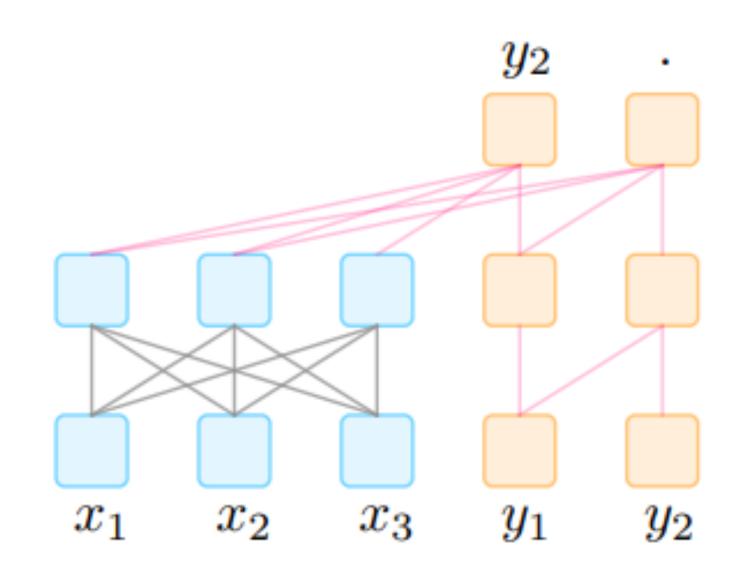
Prefix Language Model

- Characteristics:
 - A combination of Masked & Left-to-right
 - □ Use a Transformer but two different mask mechanisms to handle text X and y separately
 - Corruption operations can be introduced when encoding X
- Examples: □ UniLM 1,2, ERNIE-M



Encoder-Decoder LM

- Characteristics:
 - □ A denoised auto-encoder
 - Use two Transformers and two different mask mechanisms to handle text X and y separately
 - Corruption operations can be introduced when encoding X
- Examples: \square BART, T5

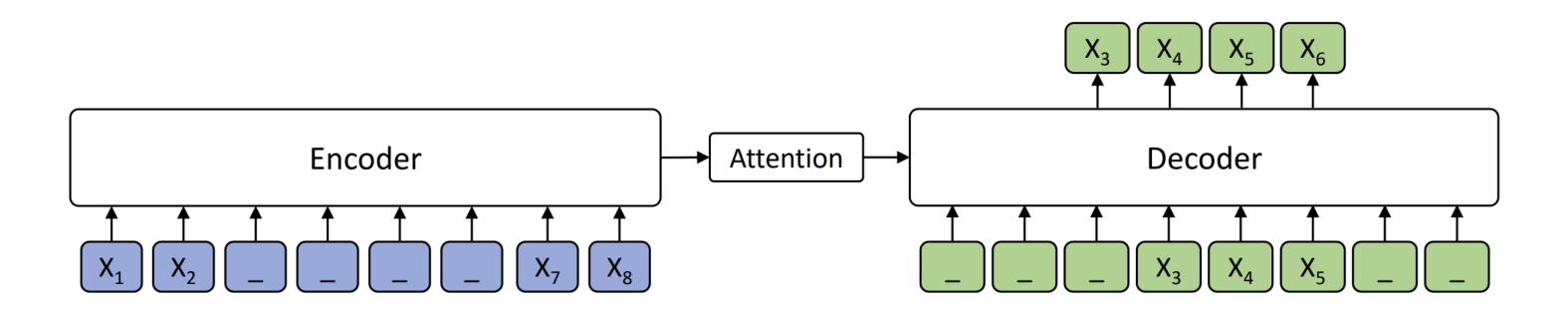


Encoder-Decoder Pre-training Methods

Representative Methods

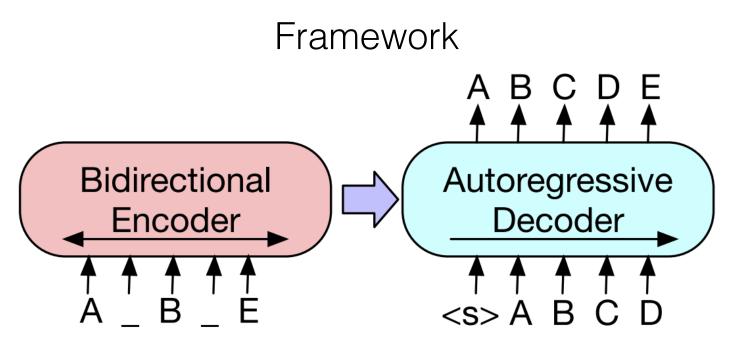
- MASS
- BART (mBART)
- UniLM
- T5 (mT5, FlanT5)

MASS (Song et al. 2019)



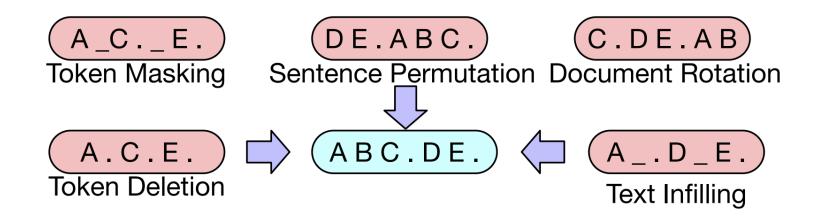
- Model: Transformer-based Encoder-decoder
- Objective: *only* predict masked spans
- Data: WebText

$H \Delta H I$ (Lewis et al. 2019)



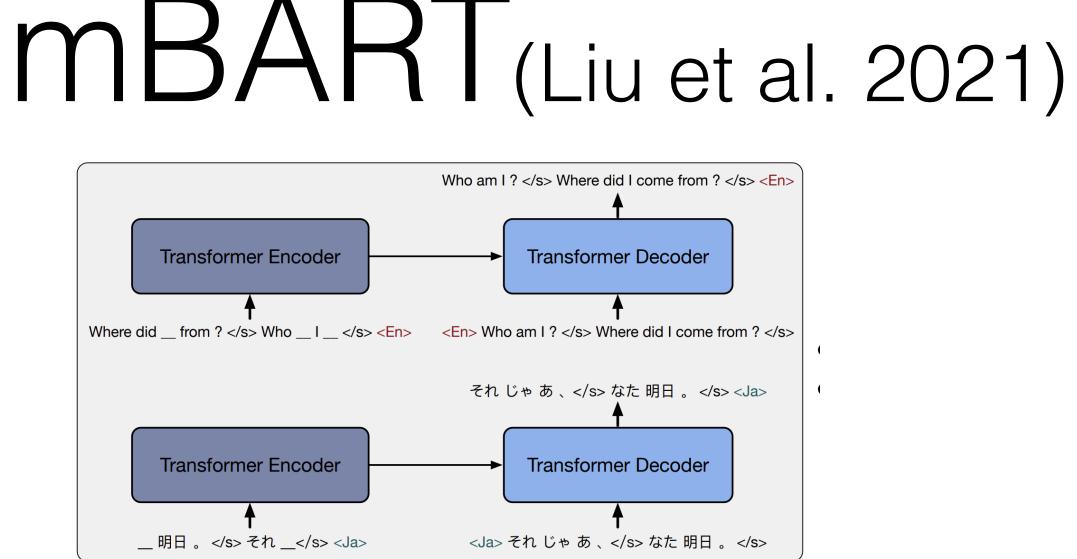
- Objective: Re-construct (corrupted) original sentences
- NEWs, WebText, Stories

Different Corruption



Model: Transformer-based encoder-decoder model

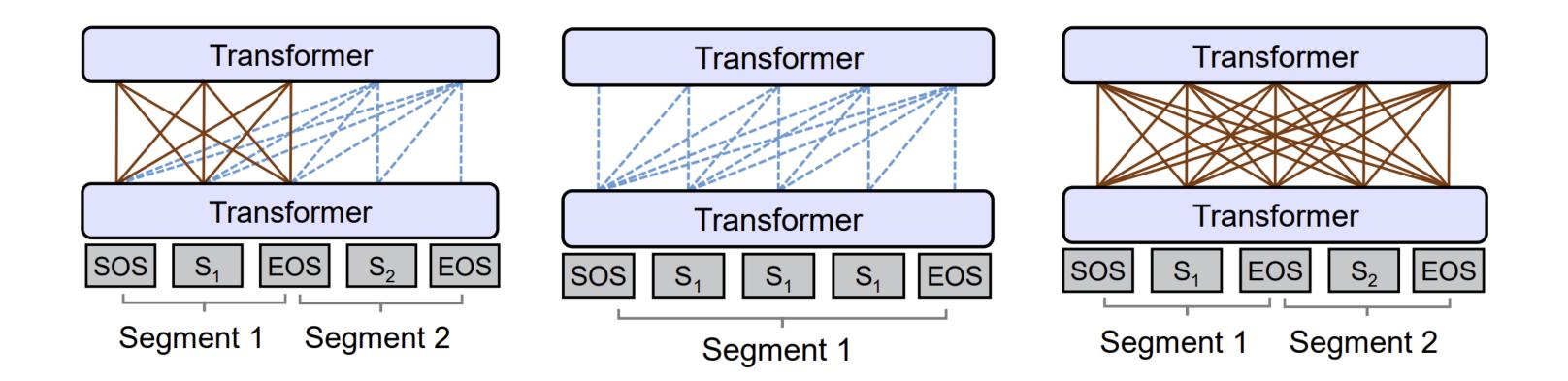
• Data: similar to RoBERTa (160GB): BookCorpus, CC-



- auto-encoder
- Objective: Re-construct (corrupted) original sentences
- Data: CC25 Corpus (25 langauges)

Model: Transformer-based Multi-lingual Denoising

UNiLM (Dong et al. 2019)



- Objective: three types of LMs, *shared* parameters
- Data: English Wikipedia and BookCorpus

• Model: Prefix LM (a.k.a. Seq2seq LM), left-to-right LM, Masked LM

"translate English to German: That is good."

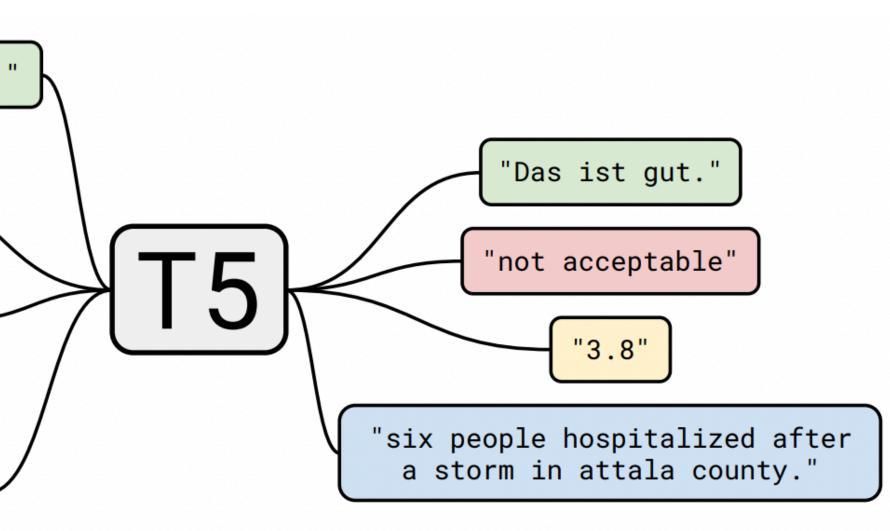
"cola sentence: The course is jumping well."

"stsb sentence1: The rhino grazed on the grass. sentence2: A rhino is grazing in a field."

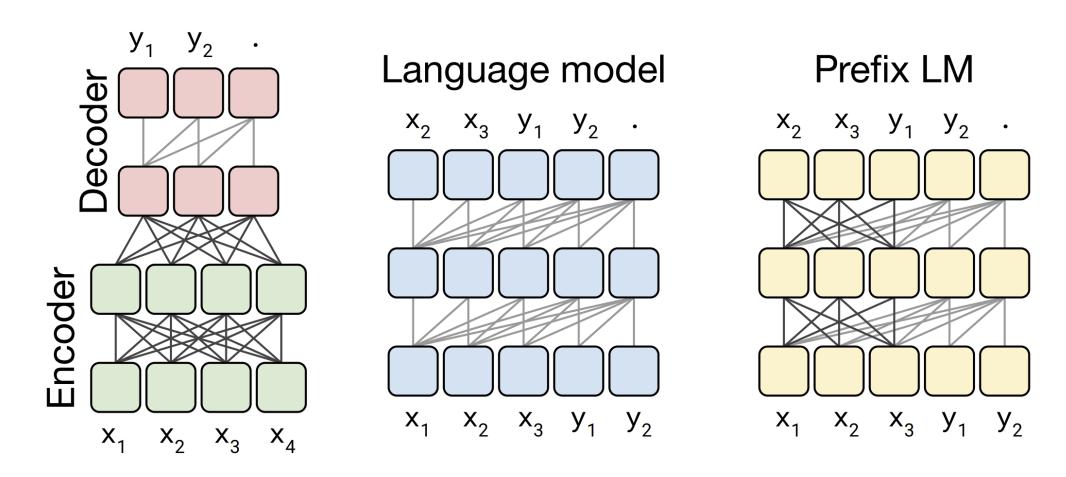
"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi..."

Convert all tasks to sequence-to-sequence prediction

T5(Raffel et al. 2020)



15(Raffel et al. 2020)



Model: left-to-right LM, Prefixed LM, encoder-decoder

• Objective: explore different objectives respectively

• Data: C4 (750G) + Wikipedia + RealNews + WebText

Objective	Inputs	Targets
Prefix language modeling	Thank you for inviting	me to your party last week .
BERT-style Devlin et al. (2018)	Thank you <m> <m> me to your party apple week .</m></m>	(original text)
Deshuffling	party me for your to . last fun you inviting week Thank	(original text)
MASS-style Song et al. (2019)	Thank you $<\!M\!>$ $<\!M\!>$ me to your party $<\!M\!>$ week .	(original text)
I.i.d. noise, replace spans	Thank you $<\!\!x\!\!>$ me to your party $<\!\!Y\!\!>$ week .	< X > for inviting $< Y >$ last $< Z >$
I.i.d. noise, drop tokens	Thank you me to your party week .	for inviting last
Random spans	Thank you $<\!\!X\!\!>$ to $<\!\!Y\!\!>$ week .	$<\!\!X\!\!>$ for inviting me $<\!\!Y\!\!>$ your party last $<\!\!Z\!\!>$

T5(Raffel et al. 2020)

Model: left-to-right LM, Prefix LM, encode-decoder

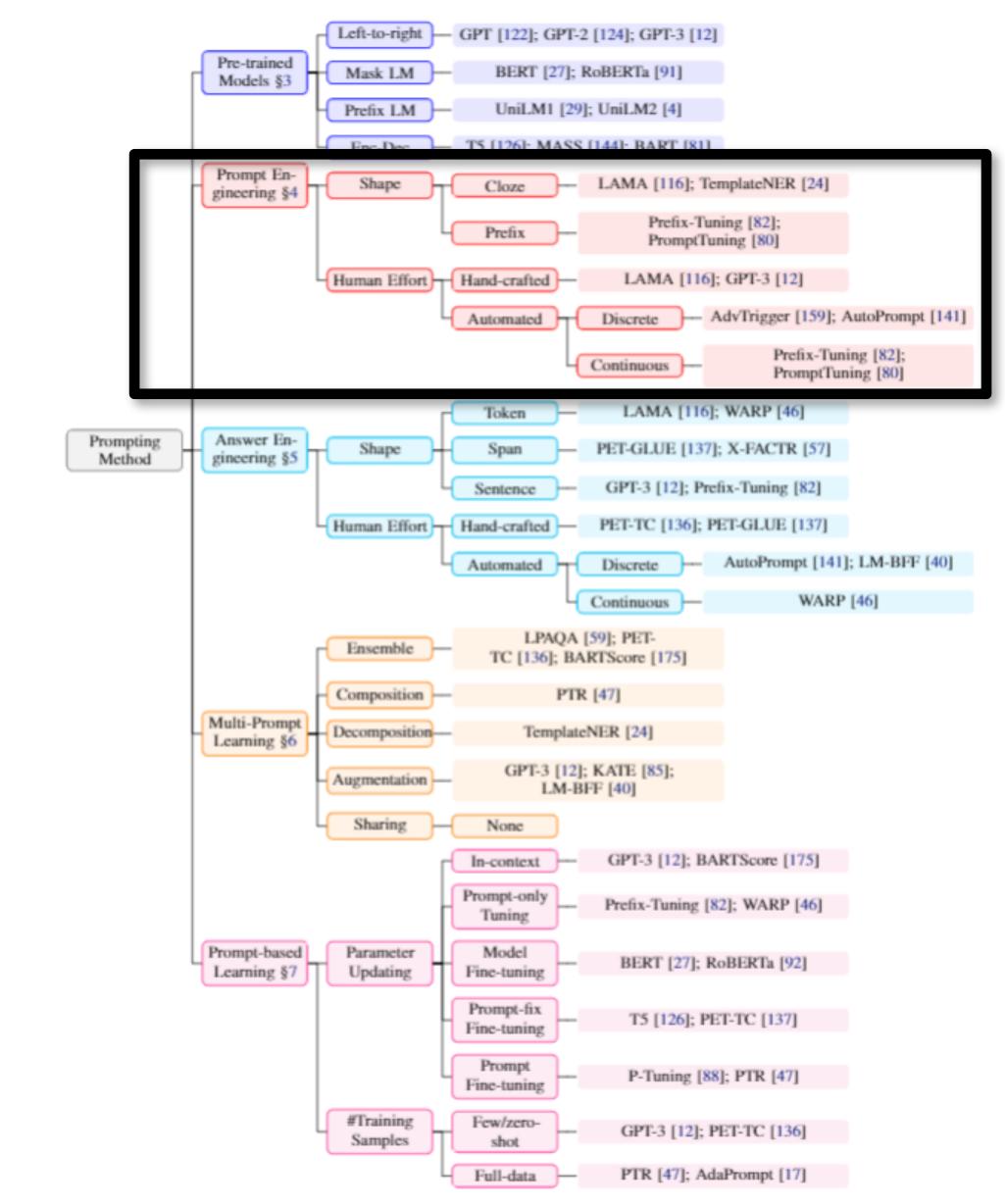
• Objective: explore different objectives respectively

• Data: C4 (750G) + Wikipedia + RealNews + WebText

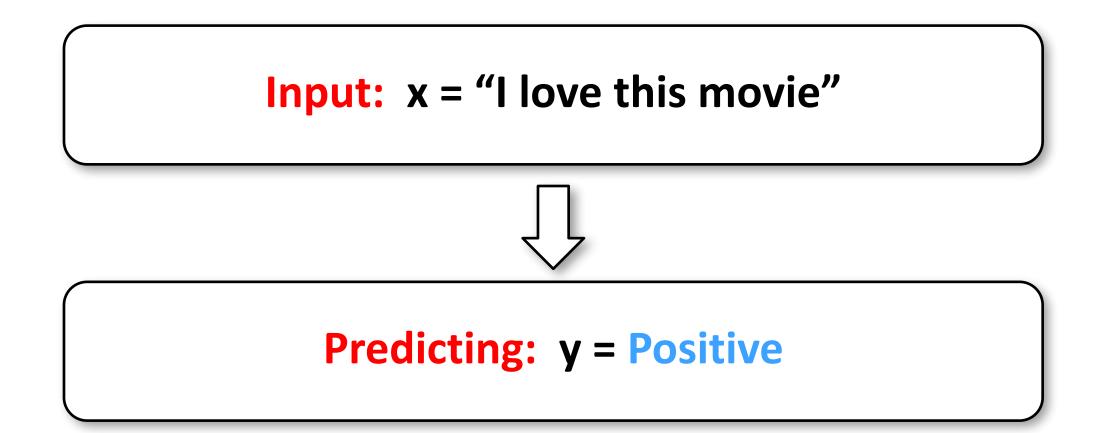
Application of Prefix LM/Encoder-Decoders in Prompting

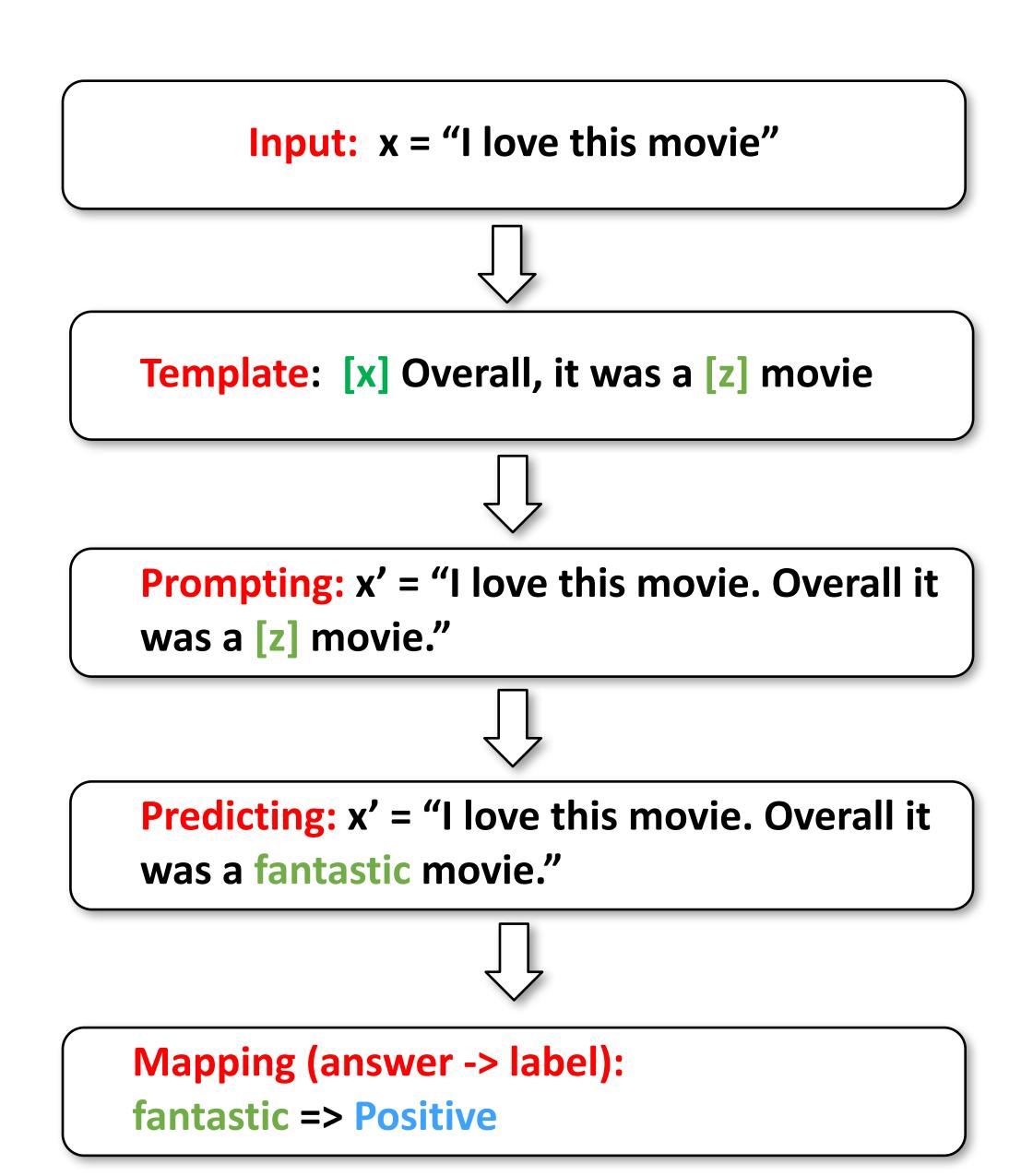
- Conditional Text Generation □ Translation
 - Text Summarization
- Generation-like Tasks □ Information Extraction
 - Question Answering

- Pre-trained Model Choice
- Prompt Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies

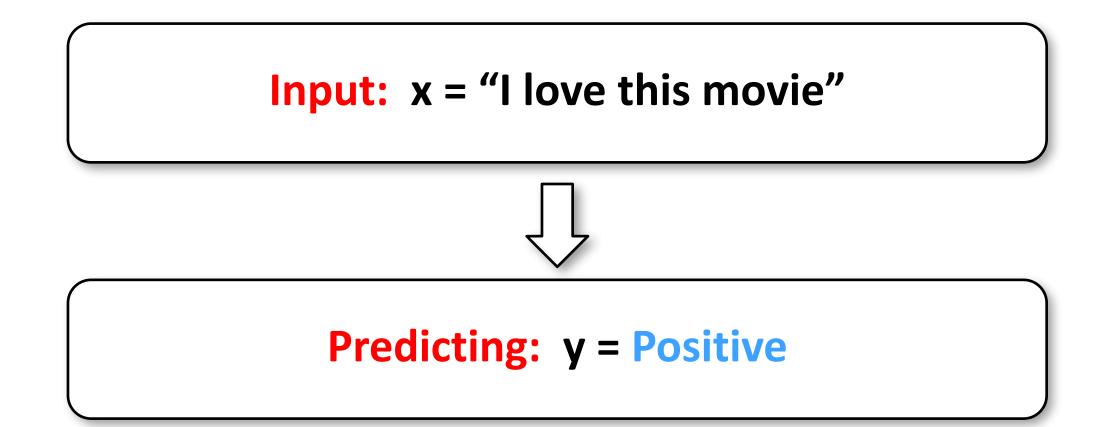


Traditional Formulation V.S Prompt Formulation

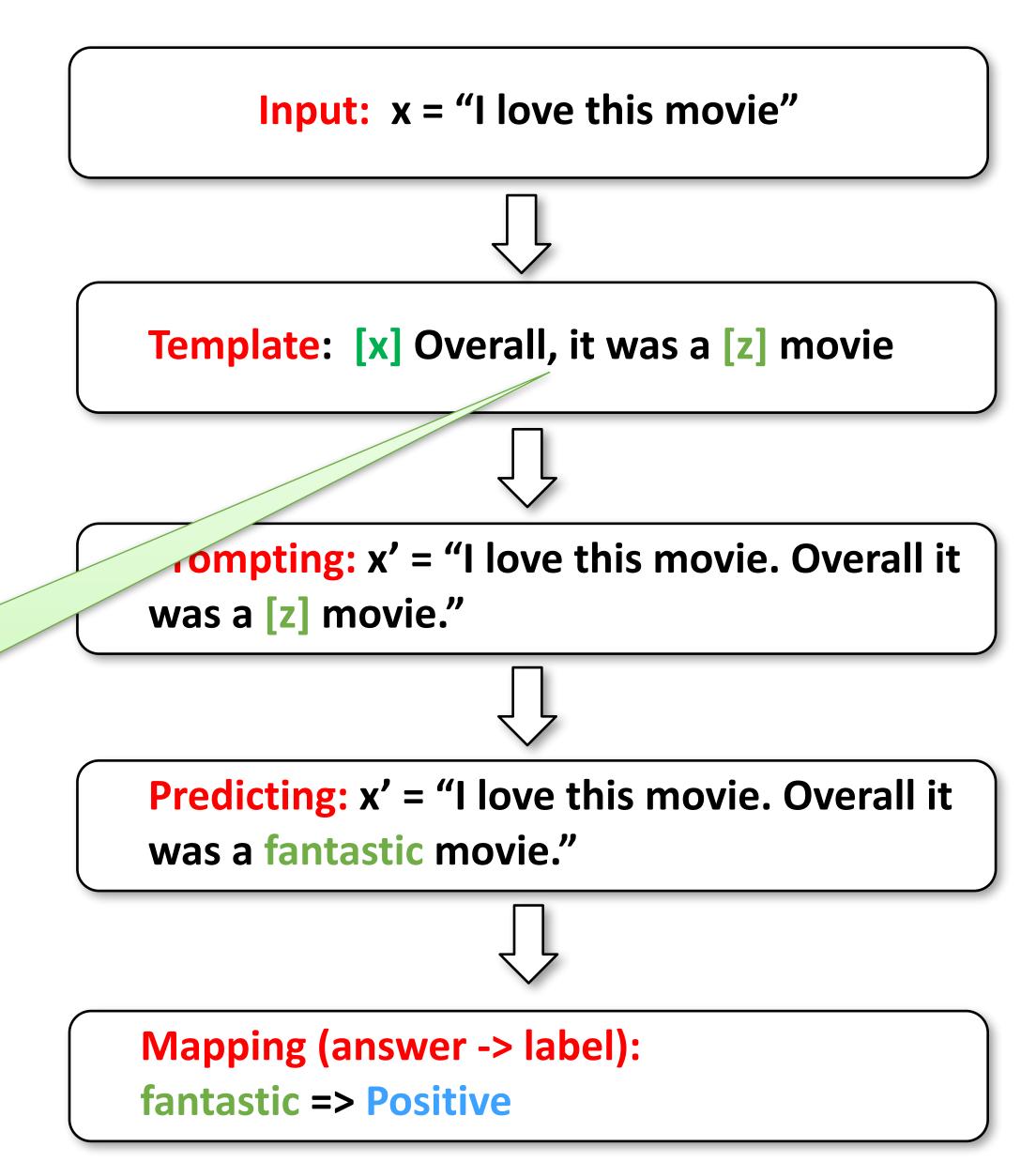




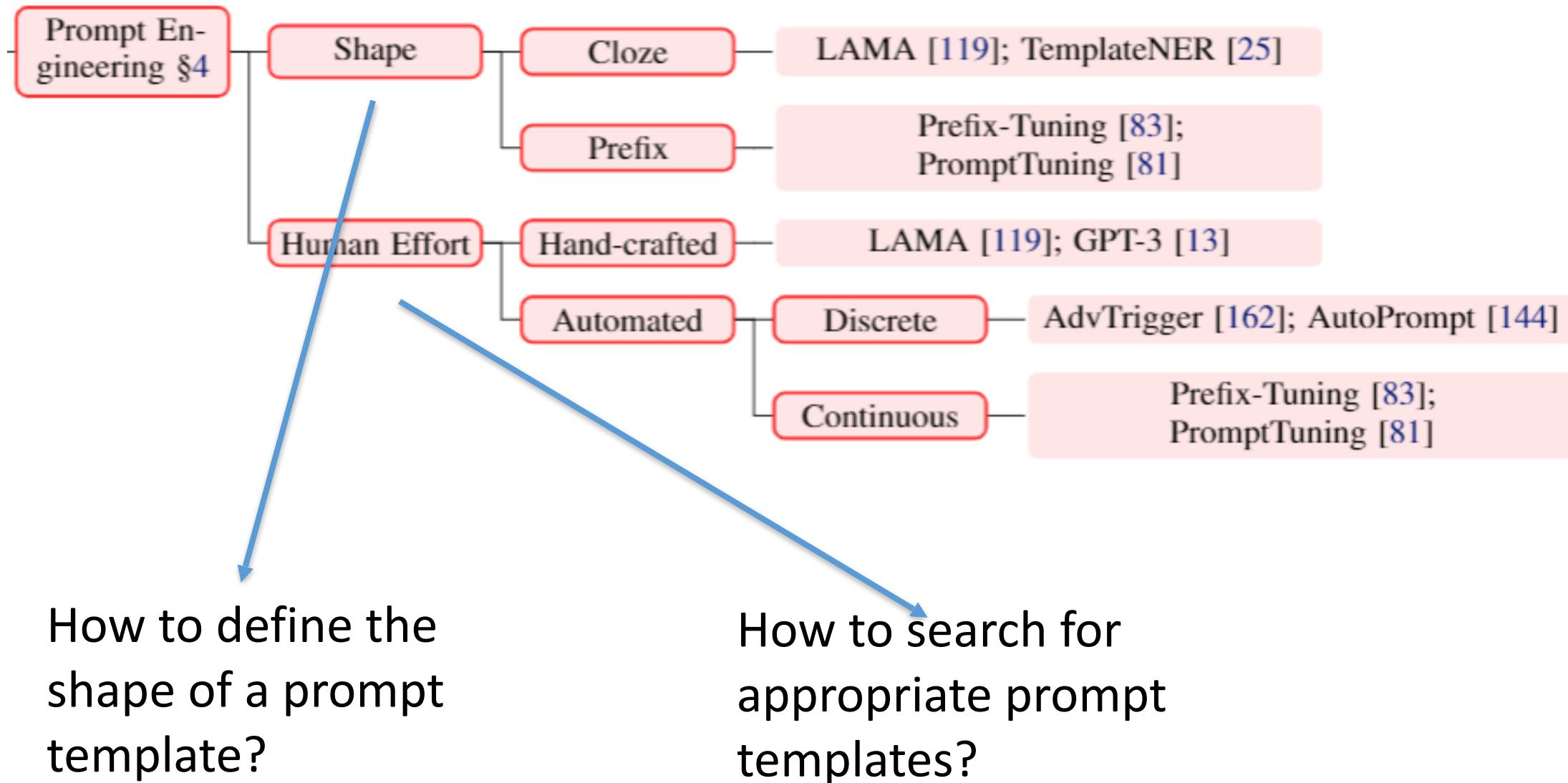
Traditional Formulation V.S Prompt Formulation



How to define a suitable prompt template?



Prompt Template Engineering



Prompt Shape

Cloze Prompt

 prompt with a slot [z] to fill in the middle of the text as a cloze prompt,

Prefix Prompt
 prompt where the input text comes
 entirely before slot [z]

I love this movie. Overall it was a [z] movie

I love this movie. Overall this movie is [z]

Design of Prompt Templates

Hand-crafted

Configure the manual template based on the characteristics of the task

Automated search

- Search in discrete space
- Search in continuous space

Representative Methods for Prompt Search

- Prompt Mining
- Prompt Paraphrasing
- Gradient-based Search
- Prompt/Prefix Tuning

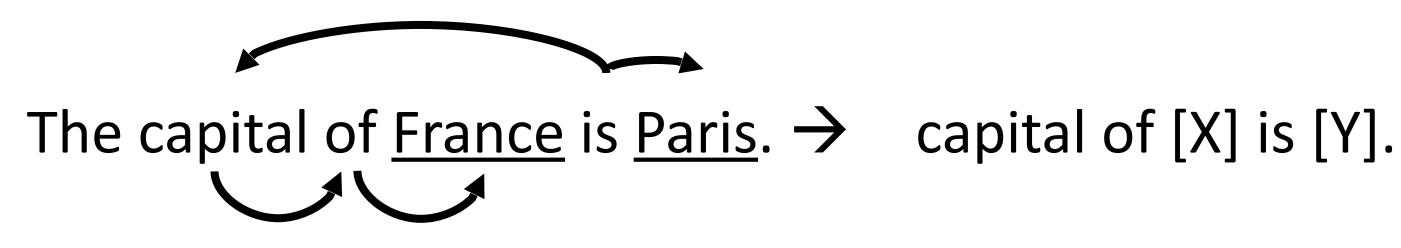
41

Prompt Mining (Jiang et al. 2019)

- Mine prompts given a set of questions/answers
- Middle-word

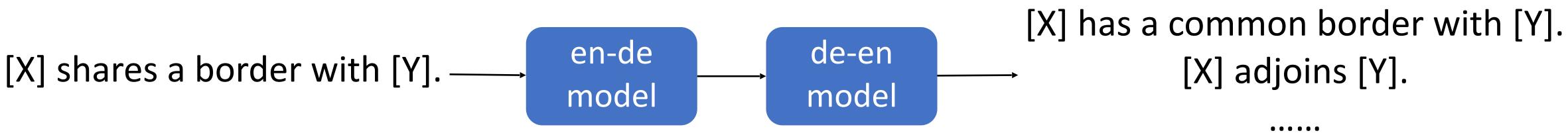
<u>Barack Obama</u> was born in <u>Hawaii</u>. \rightarrow [X] was born in [Y].

Dependency-based



Prompt Paraphrasing (Jiang et al. 2019)

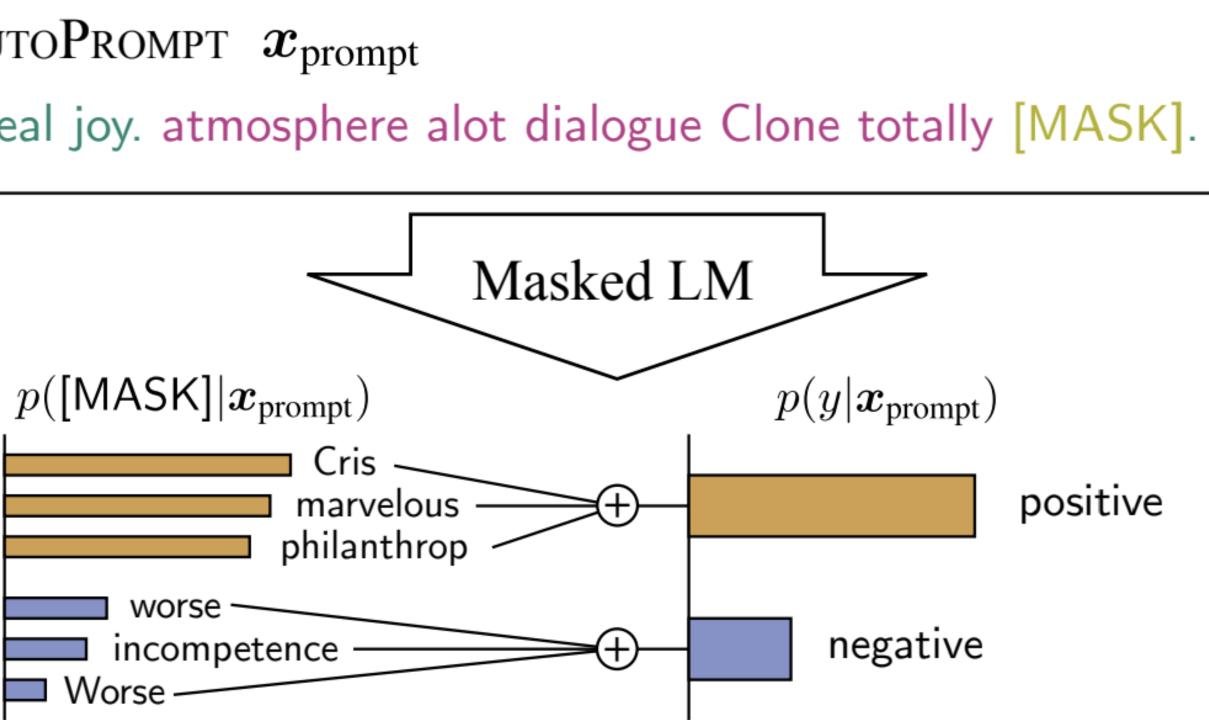
- Paraphrase an existing prompt to get other candidates
- e.g. back translation with beam search



Gradient-based Search — AutoPrompt (Shin et al. 2020)

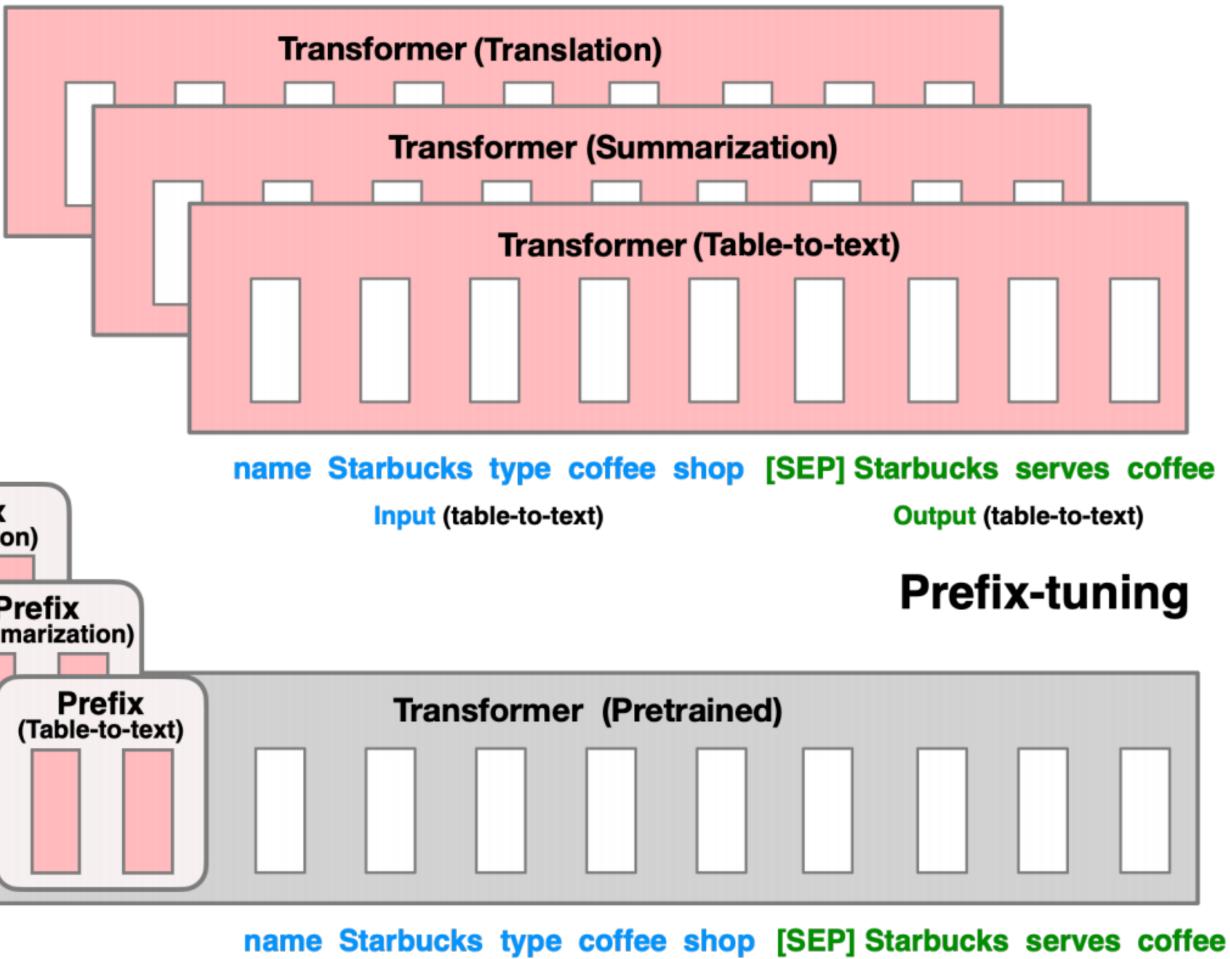
Original Input x_{inp}		AU
a real joy.		a re
Trigger Tokens $oldsymbol{x}_{ ext{trig}}$		
atmosphere, alot, dialogue, Clone		
Template $\lambda(\boldsymbol{x}_{inp}, \boldsymbol{x}_{trig})$		
sentence[T][T][T][T][T][P].		

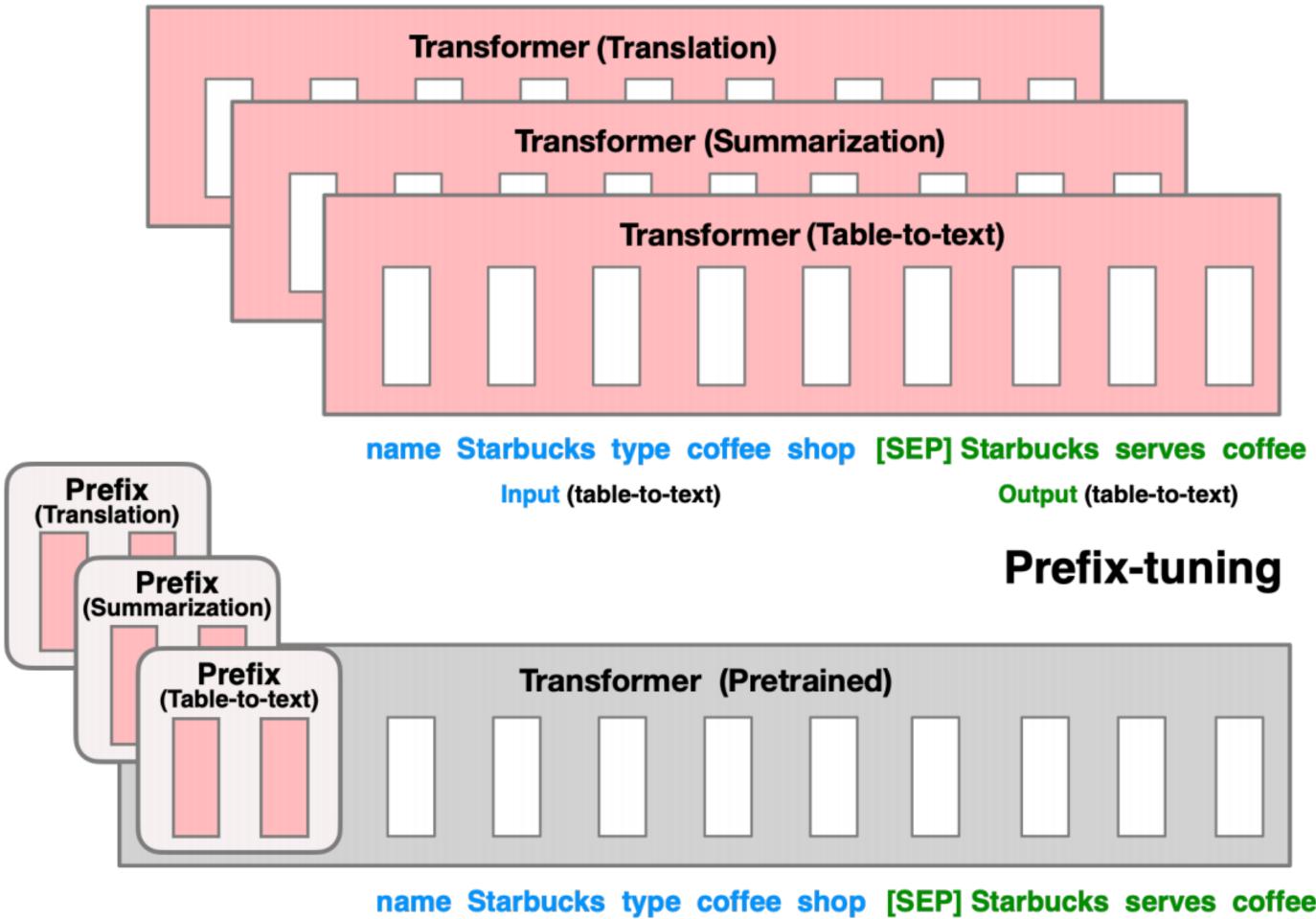
Automatically optimize arbitrary prompts based on existing words



Prefix/Prompt Tuning (Li and Liang 2021, Lester et al. 2021)

- Optimize the embeddings of a prompt, instead of the words.
- "Prompt Tuning" optimizes only the embedding layer, "Prefix Tuning" optimizes prefix of all layers





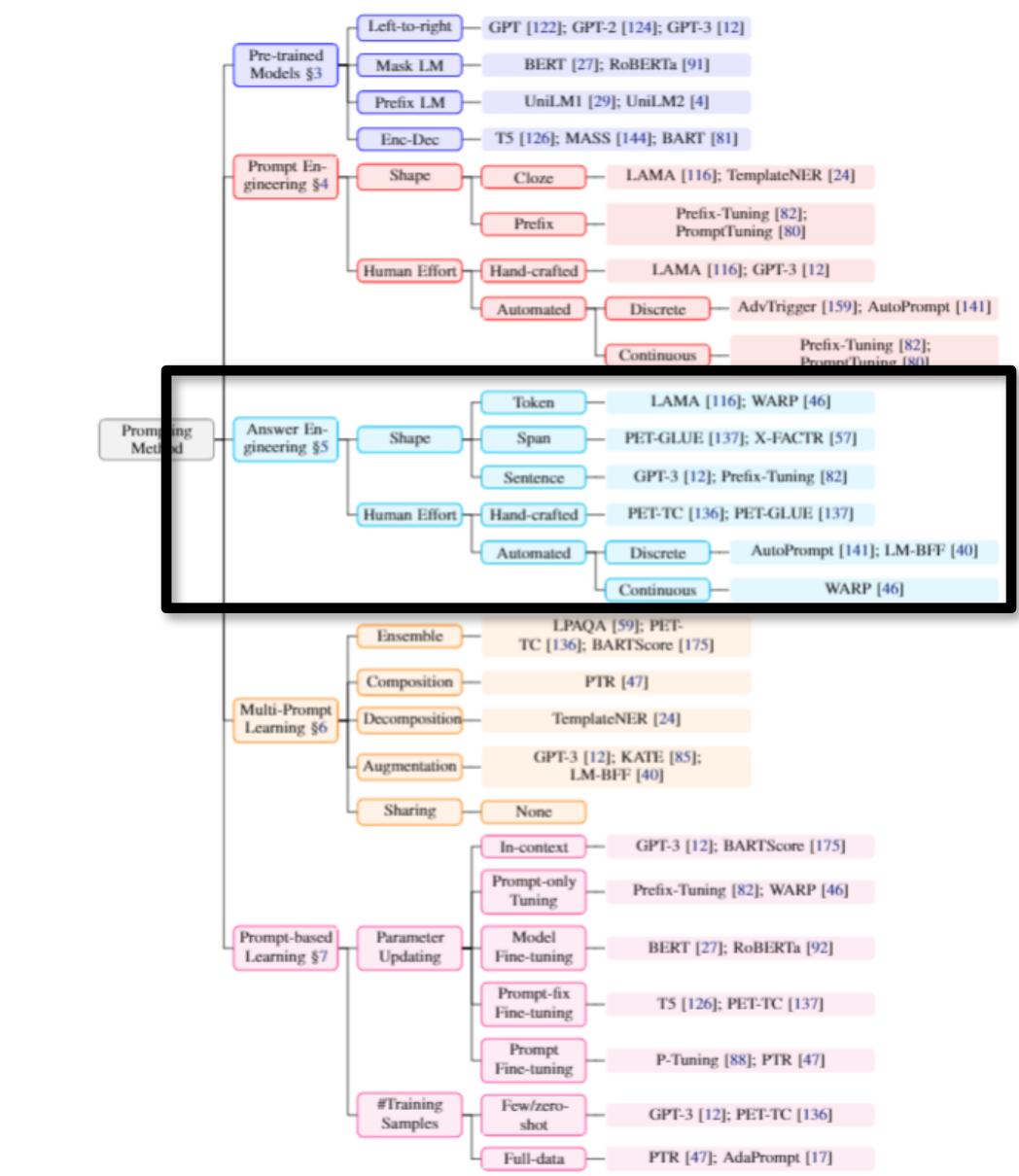
Fine-tuning

Input (table-to-text)

Output (table-to-text)

Design Considerations for Prompting

- Pre-trained Model Choice
- Prompt Template Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies

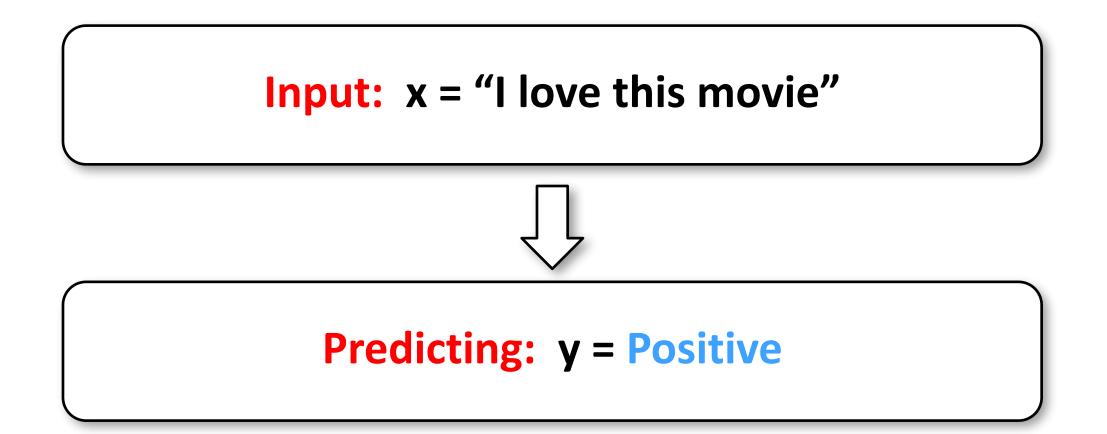


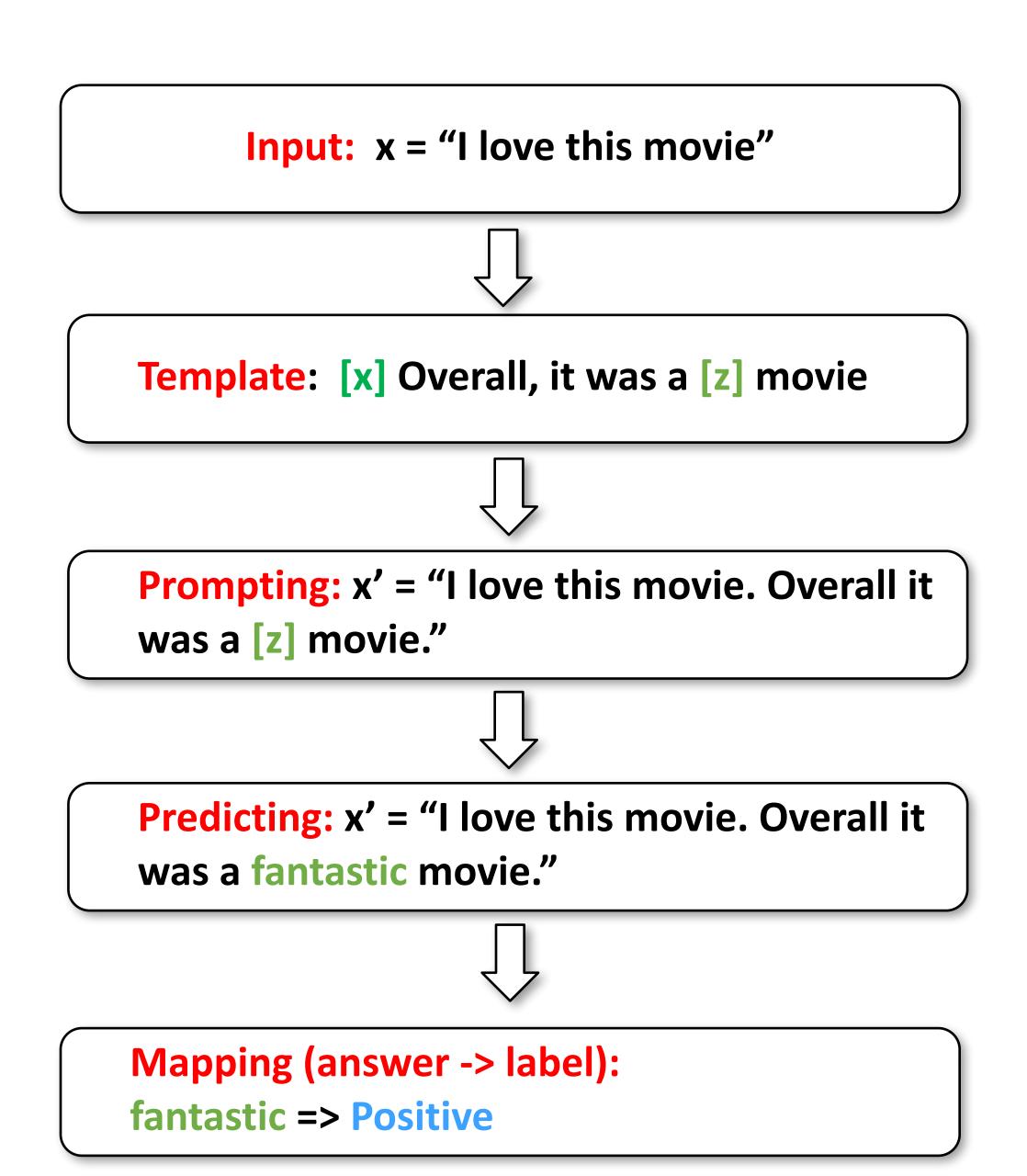
Why do we need answer engineering?

□ We have reformulated the task! We also should re-define the "ground truth labels"

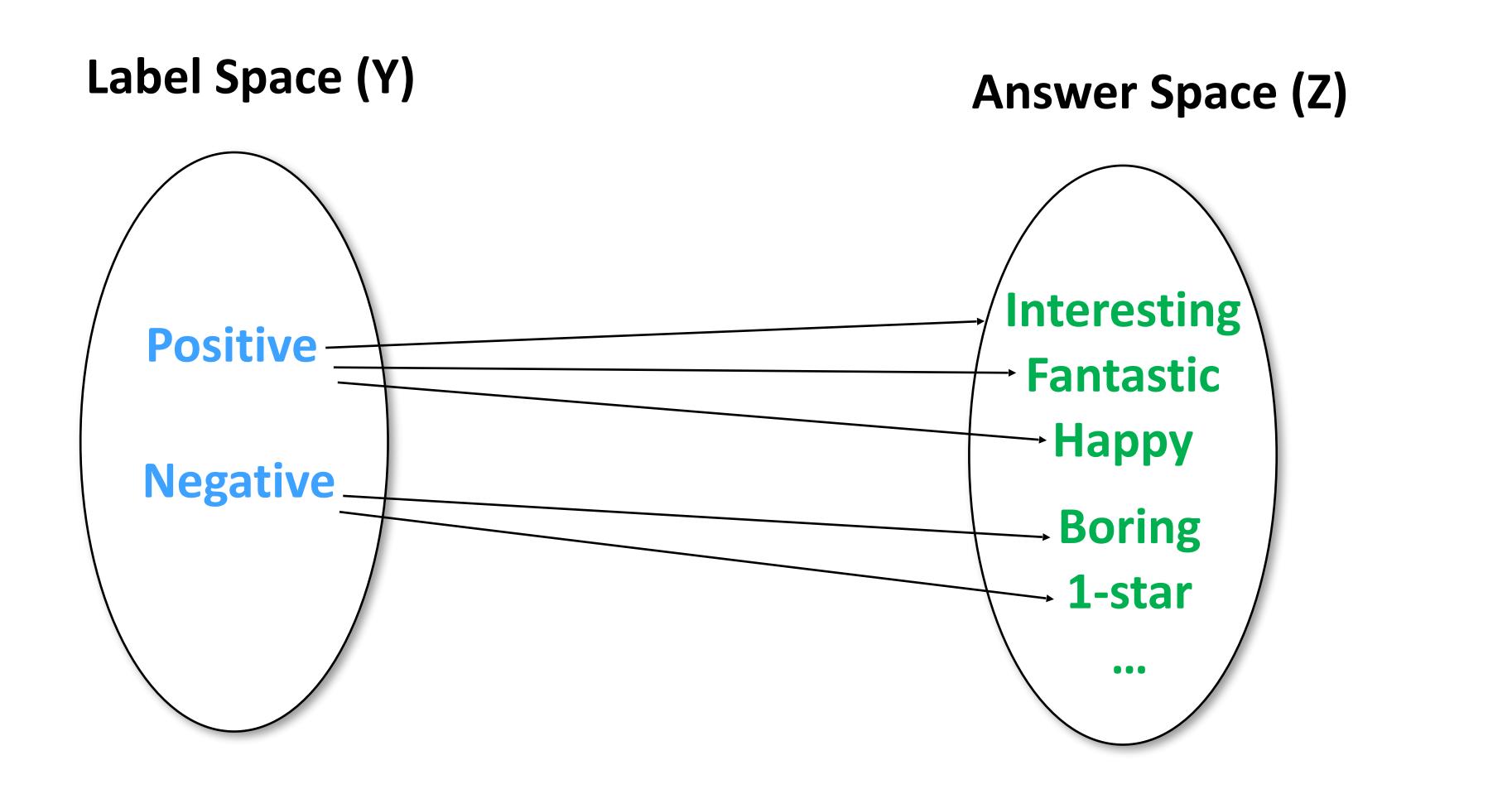
Answer Engineering

Traditional Formulation V.S Prompt Formulation





Traditional Formulation V.S Prompt Formulation



Why do we need answer engineering?

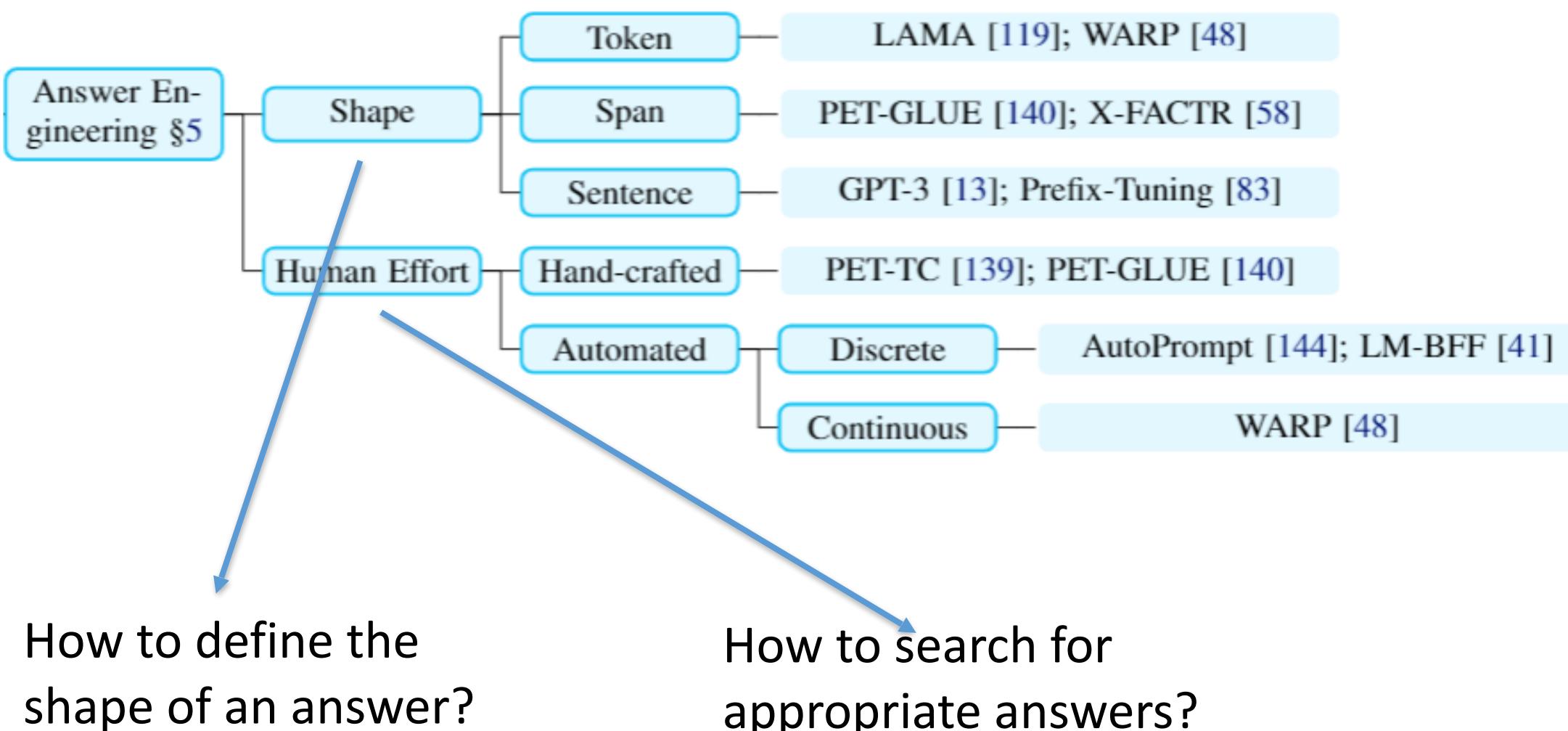
□ We have reformulate the task! We also should re-define the "ground truth labels"

Definition:

□ aims to search for an answer space and a map to the original output Y that results in an effective predictive model

Answer Engineering

Design of P



Prompt	Answer
--------	--------

LAMA [1]	19];	WARP	[48]
----------	------	------	------

appropriate answers?

51

Answer Shape

- Token: Answers can be one token in the pre-trained language model vocabulary
- Chunk: Answers can be chunks of words made up of more than one tokens

Usually used with the Cloze prompt

- Sentence: Answers can be a sentence of arbitrary length Usually used with prefix prompt (seq2seq LM for generative tasks)

Answer Shape

Туре	Task	Input ([X])	Template	Answer ([Z])
	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic
Text CLS	Topics	He prompted the LM.	[X] The text is about [Z].	sports science
-	Intention	What is taxi fare to Denver?	[X] The question is about [Z]	quantity city
Text-span CLS	Aspect Sentiment	Poor service but good food.	[X] What about service? [Z].	Bad Terrible
Text-pair CLS	NLI	[X1]: An old man with [X2]: A man walks	[X1]?[Z],[X2]	Yes No
Tagging	NER	[X1]: Mike went to Paris. [X2]: Paris	[X1] [X2] is a [Z] entity.	organization location
Text Generation _	Summarization	Las Vegas police	[X] TL;DR: [Z]	The victim A woman
	Translation	Je vous aime.	French: [X] English: [Z]	I love you. I fancy you.

token

Token or span

sentences

Answer Search

Hand-crafted

- □ Infinite answer space (e.g., summarization, machine translation): Map the predicted tokens as the final answers ($z \rightarrow y$)
- Finite answer space (e.g., text classification, sequence labeling): Map a finite set of words to labels (e.g., "anger", "sadness", "fear" to "negative")
- Automated Search
 Discrete Space
 - Continuous Space

54

Discrete Search Space

- Answer Paraphrasing
 - \Box start with an initial answer space,
 - then use paraphrasing to expand this answer space
- Prune-then-Search
 - □ an initial pruned answer space of several plausible answers is generated
 - an algorithm further searches over this pruned space to select a final set of answers

Label Decomposition

- decompose each relation label into its constituent words and use them as an answer
 - per:city_of_death => {person, city, death}

Chain-of-Thought Prompting

Instead of searching for the answer directly, and manually add some intermediate reasoning steps in the prompt to guide the model derive the answer

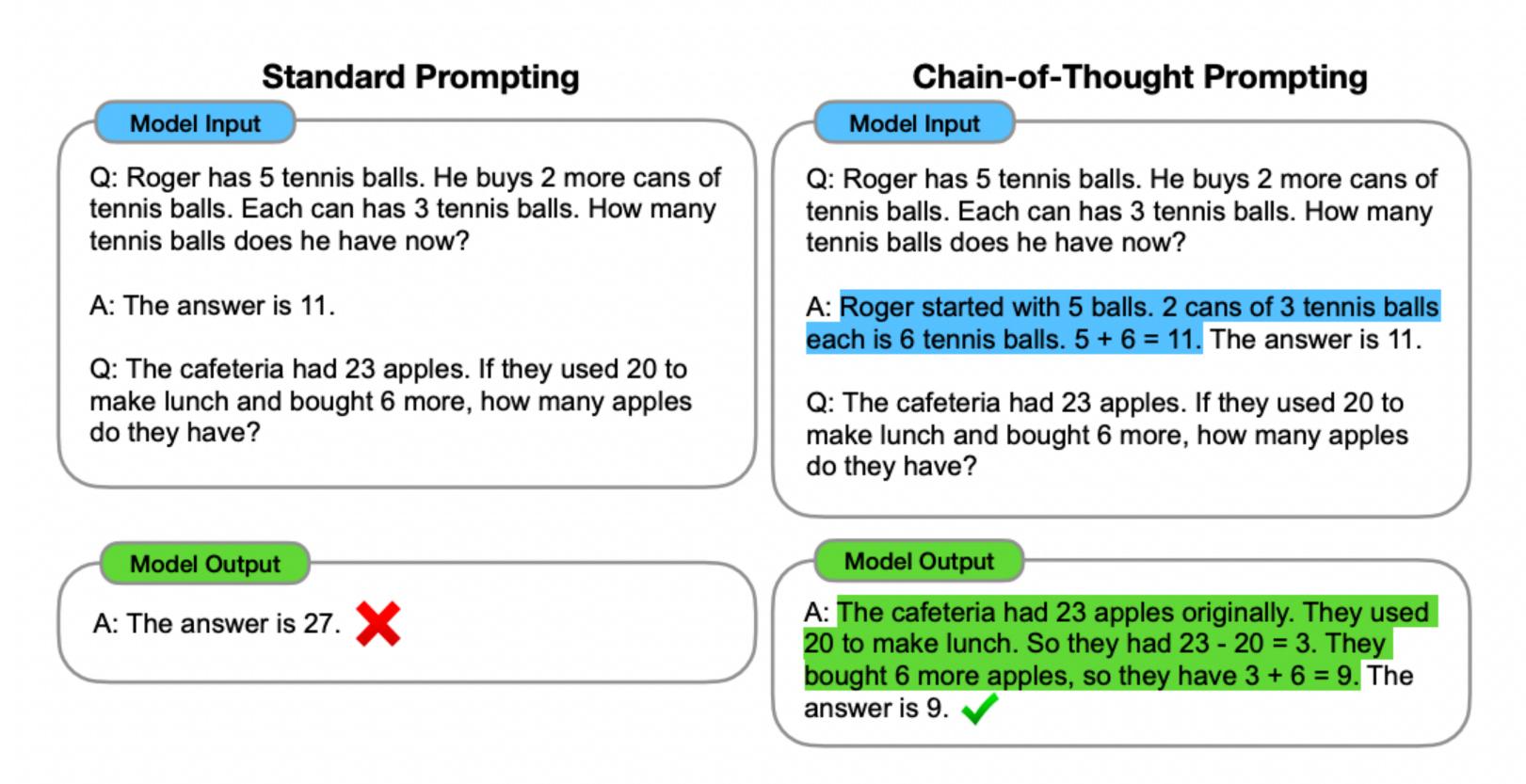
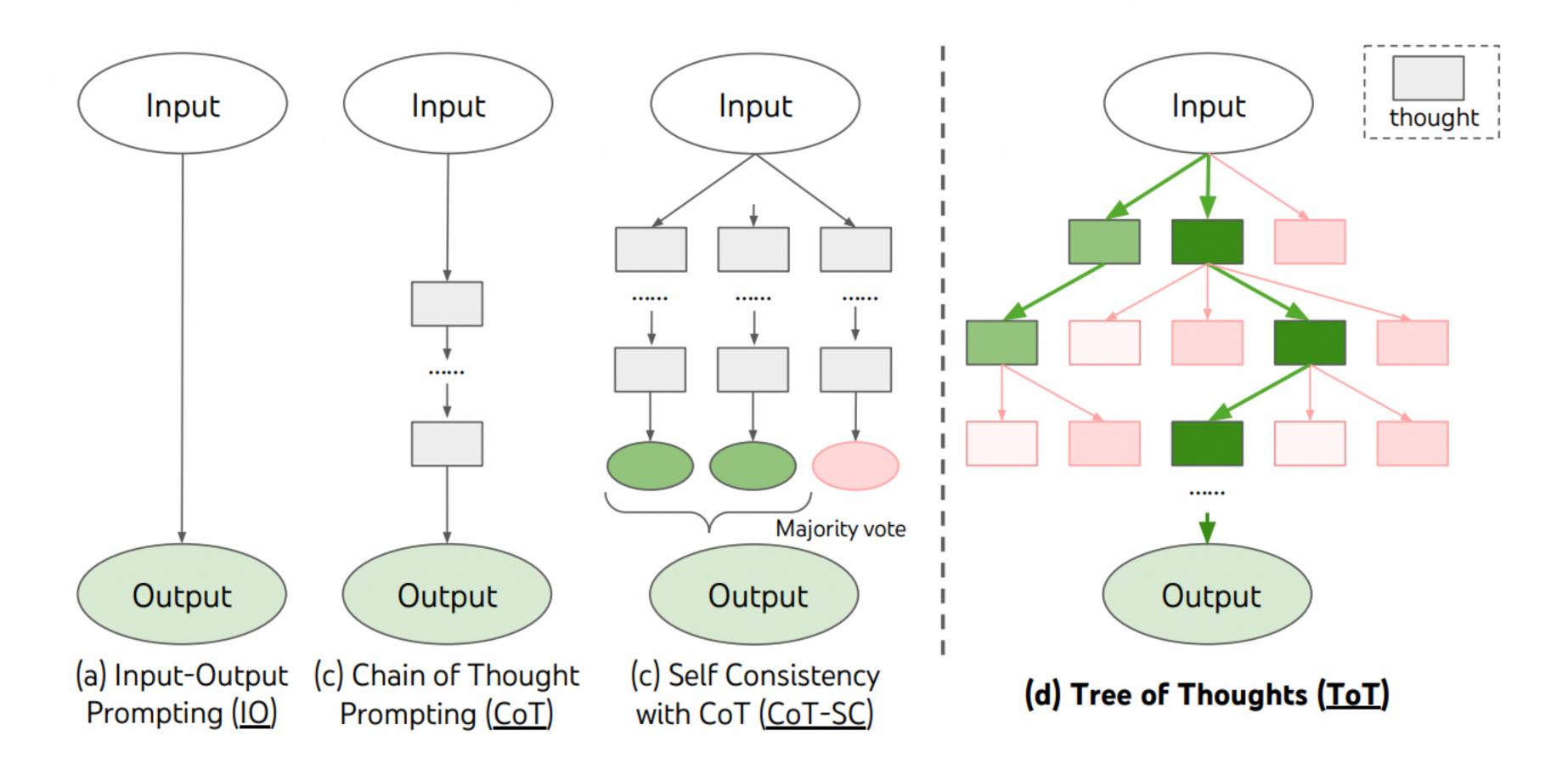


Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic, commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

Tree-of-Thought

the output sequence to follow a tree structure



Instead of search the answer using a linear chain structure, prompt

Tree of Thought: Example

output could be "(10 - 4) * (13 - 9) = 24".

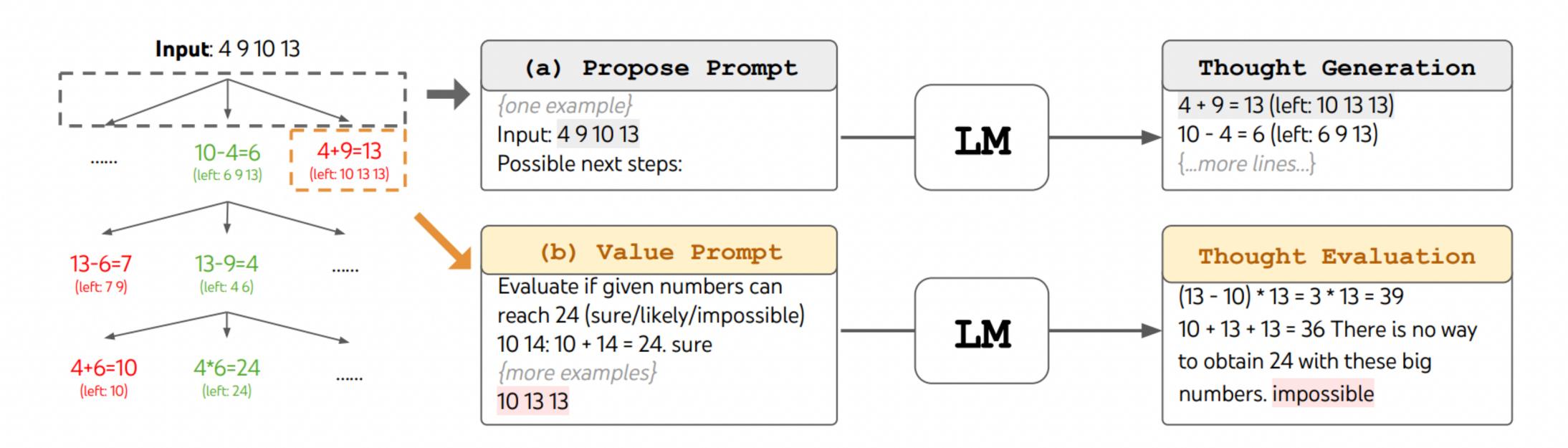
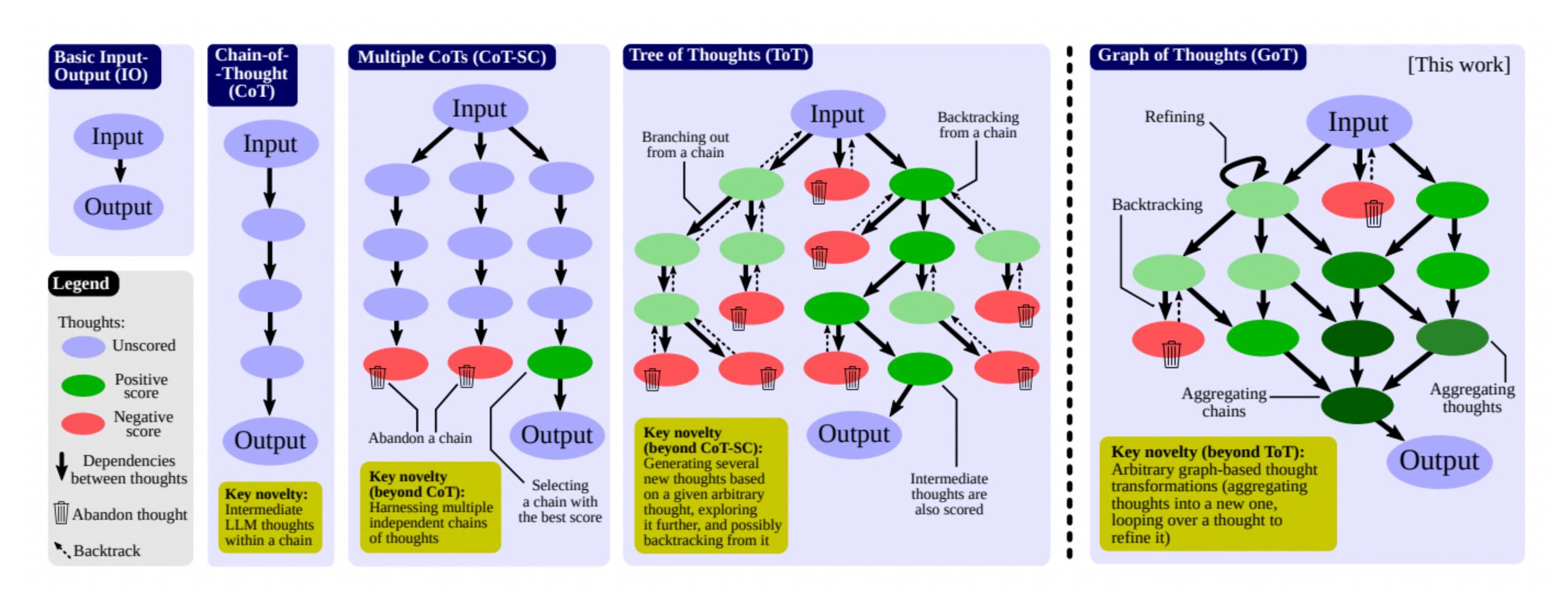


Figure 2: ToT in a game of 24. The LM is prompted for (a) thought generation and (b) valuation.

Game of 24 is a mathematical reasoning challenge, where the goal is to use 4 numbers and basic arithmetic operations (+-*/) to obtain 24. For example, given input "4 9 10 13", a solution

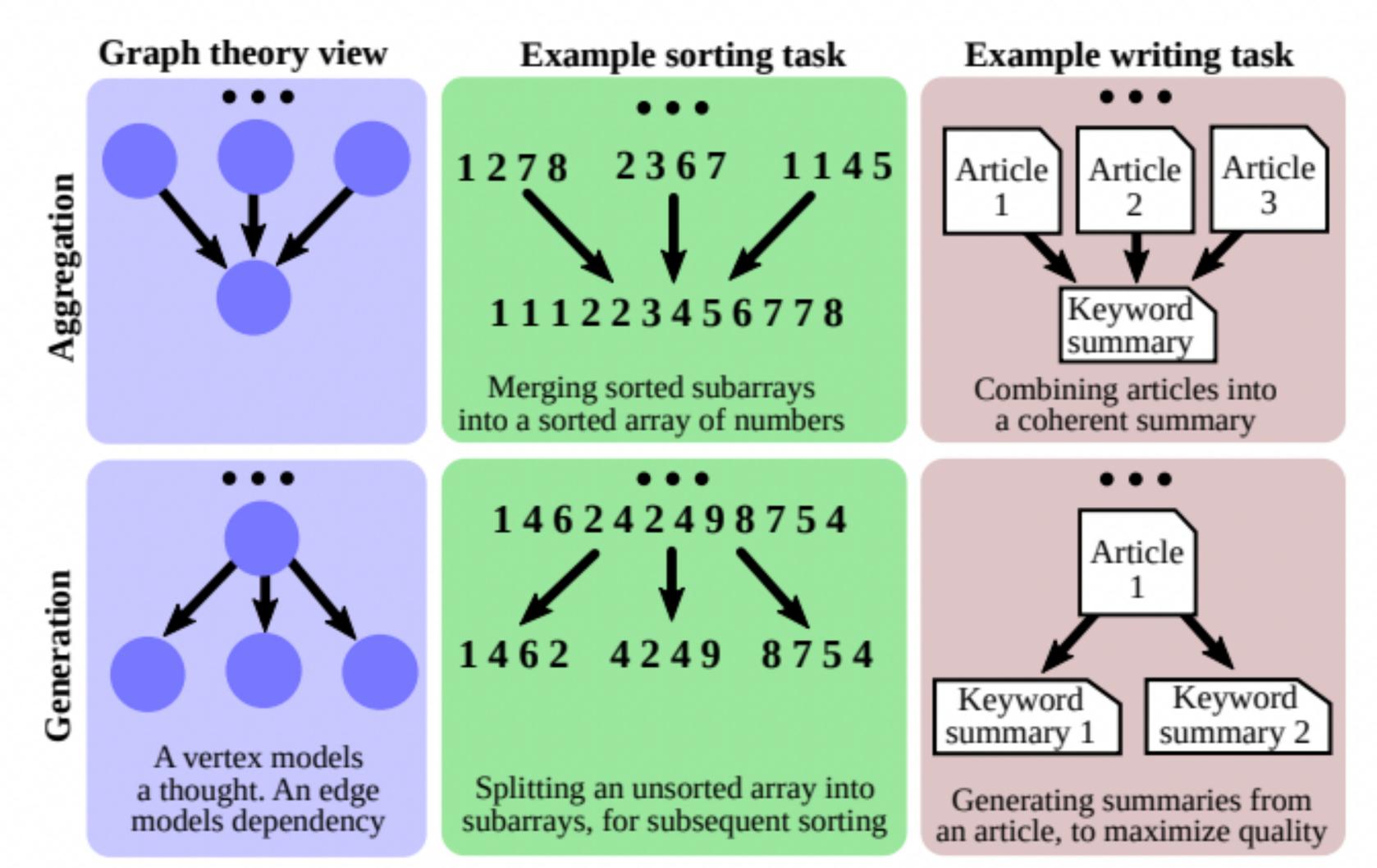
Graph-of-Thought

- Use a graph structure instead
 - Refining: allow self-loop over a single node
 - Aggregating: allow merging of multiple nodes



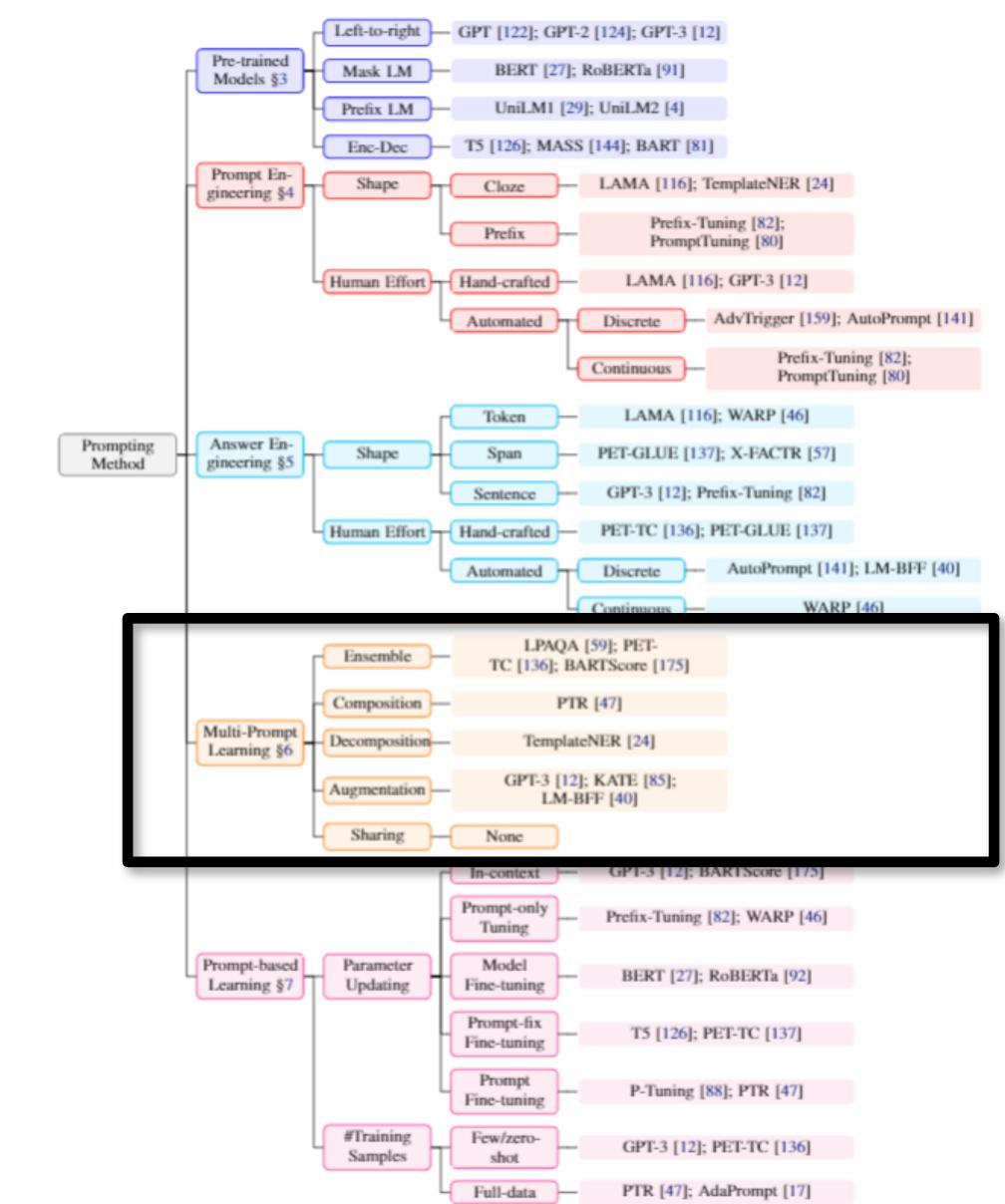
Graph-of-Thought: Example

Useful for some divide-and-conquer tasks: sorting, etc.



Design Considerations for Prompting

- Pre-trained Model Choice
- Prompt Template Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies

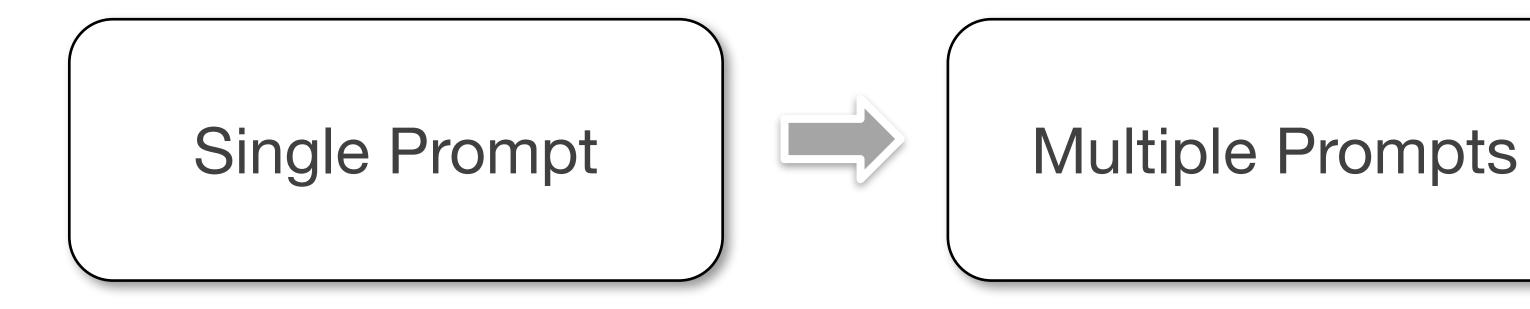


Multi-Prompt Learning



Multiple Prompts

Multi-Prompt Learning



Prompt Ensemble

Prompt Augmentation

Prompt Composition

Prompt Decomposition

Prompt Sharing

Definition

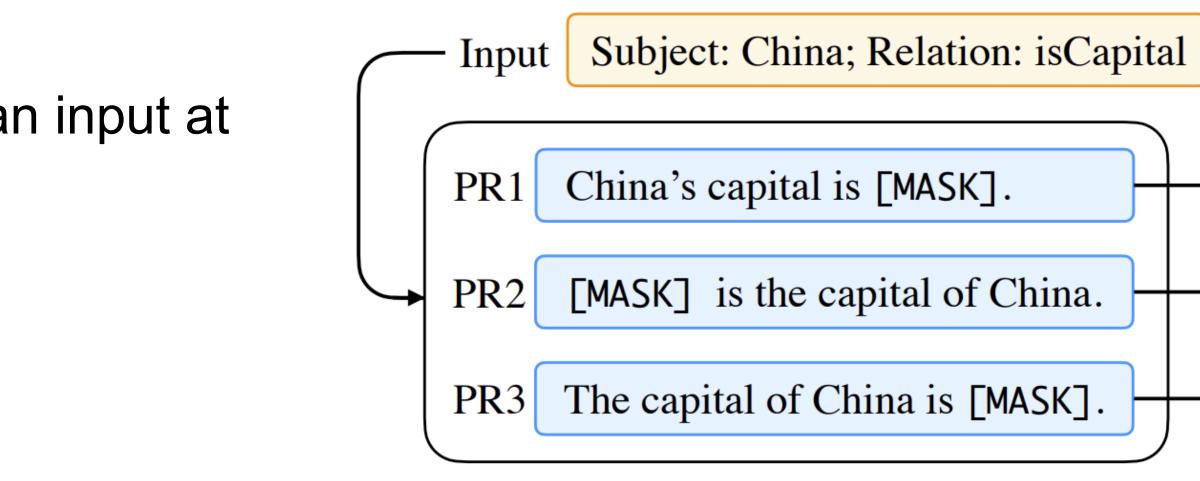
using multiple unanswered prompts for an input at inference time to make predictions

Advantages

Utilize complementary advantages

- Alleviate the cost of prompt engineering
- Stabilize performance on downstream tasks

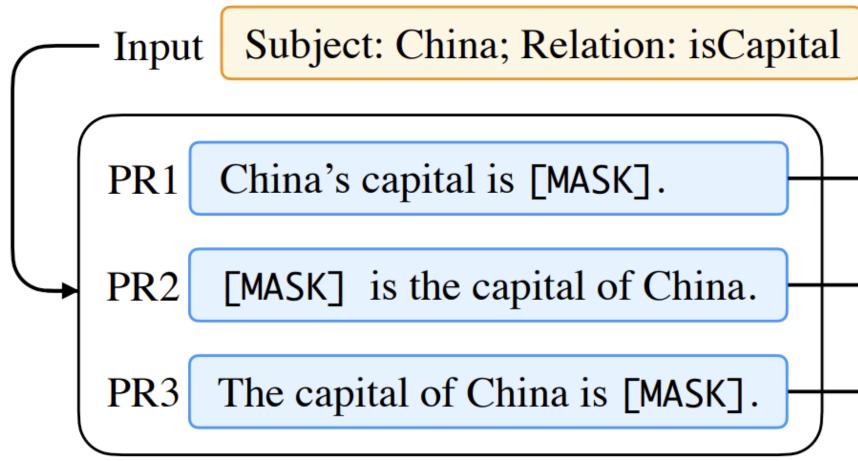
Prompt Ensembling



Typical Methods

- Uniform Averaging
- Weighted Averaging
- Majority Voting

Prompt Ensembling



Prompt Augmentation

Definition

 Help the model answer the prompt that is currently being answered by additional answered prompts

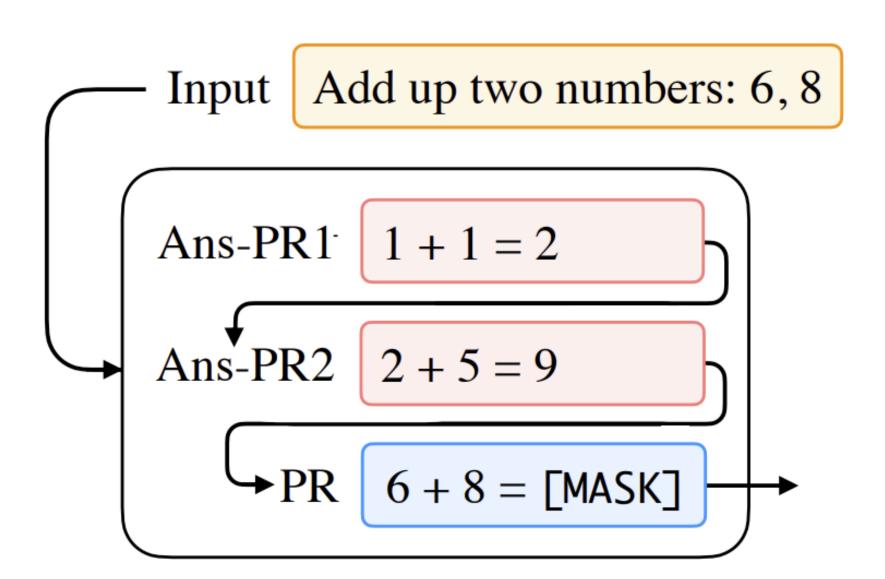
Advantage

make use of the small amount of information that
 has been annotated

Core step

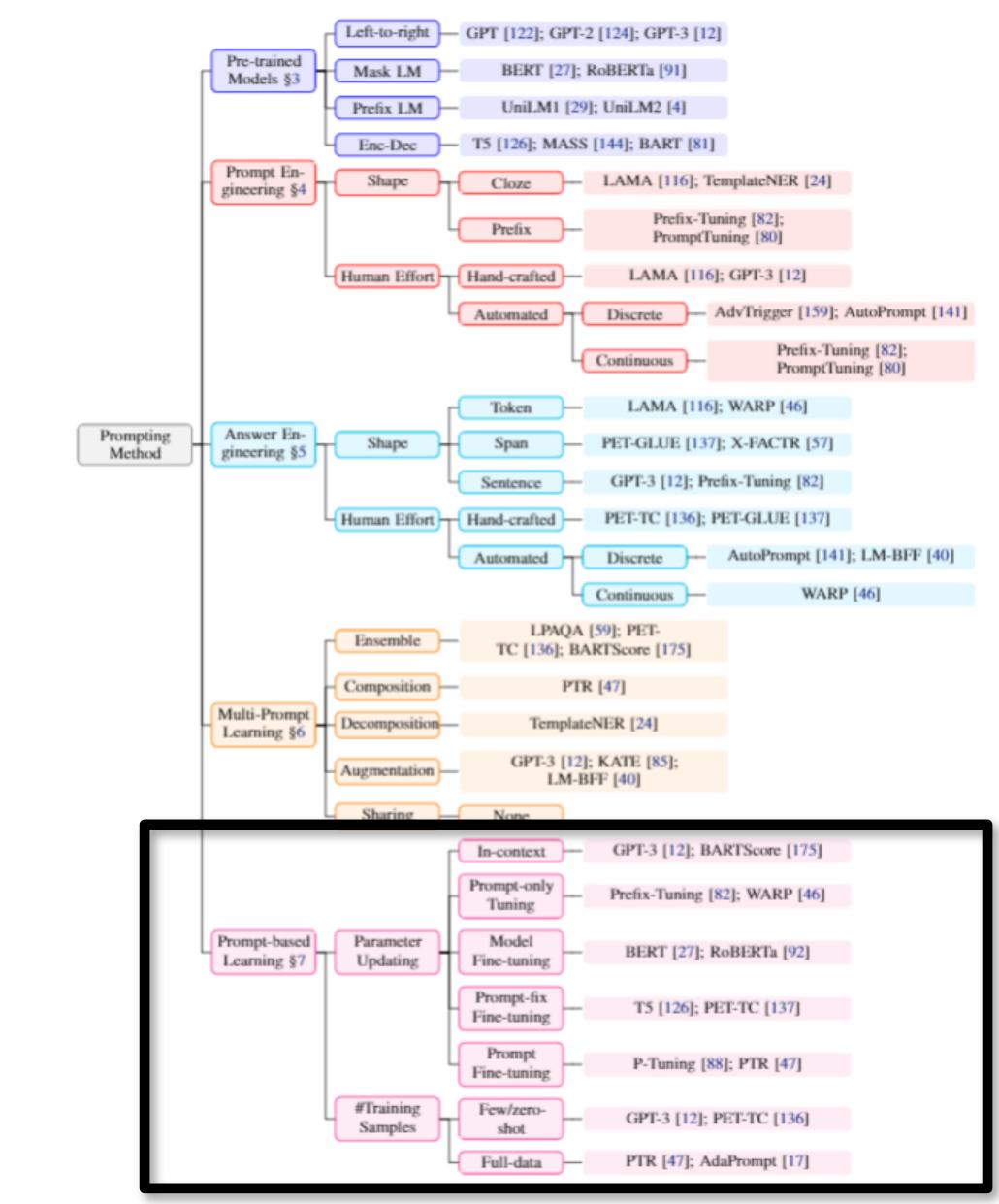
Selection of answered prompts

Ordering of answered prompts



Design Considerations for Prompting

- Pre-trained Model Choice
- Prompt Template Engineering
- Answer Engineering
- Expanding the Paradigm
- Prompt-based Training Strategies



Prompt-based Training Strategies

Data Perspective

How many training samples are used?

Parameter Perspective

Whether/How are parameters updated?

Prompt-based Training: Data Perspective

- Zero-shot: without any explicit training of the LM for the downstream task
- Few-shot: few training samples (e.g., 1-100) of downstream tasks
 Full-data: lots of training samples (e.g., 10K) of downstream tasks

Prompt-based Training: Parameter Perspective

Strategy	LM Params Tuned	Additional Prompt Params	Prompt Params Tuned	Examples
Promptless Fine- Tuning	Yes	N/A	N/A	BERT Fine-tuning
Tuning-free Prompting	No	No	N/A	GPT-3
Fixed-LM Prompt Tuning	No	Yes	Yes	Prefix Tuning
Fixed-prompt LM Tuning	Yes	No	N/A	PET
Prompt+LM Fine-tuning	Yes	Yes	Yes	PADA

Too many, difficult to select?

Promptless Fine-tuning Fixed-prompt Tuning Prompt+LM Fine-tuning

Tuning-free Prompting Fixed-LM Prompt Tuning If you have a huge pre-trained language model (e.g., GPT3)

If you have few training samples?

If you have lots of training samples?

Questions?