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Parameter-Efficient
Fine-Tuning

...and other ways to bypass costly fine-tuning.
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Goals for Today

What is PEFT and why do we care about it?
Classes of PEFT methods

Adapters & (IA)

Prefix-tuning & Prompt-tuning

LoRA & Q-LoRA

Bonus: Alternate methods for tuning-free adaptation



Background: Open-source LMs

Language models are becoming larger over time, so it’s computationally

expensive to fine-tune these open-source LMs
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Fig. 1. A timeline of existing large language models (having a size larger than 10B) in recent years. We mark the open-source LLMs in yellow color.



From Fine-tuning to Parameter-efficient
Fine-tuning
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Full Fine-tuning Parameter-efficient Fine-tuning
Update all model parameters Update a small subset of model parameters

Slide from: EMNLP 2022 Tutorial on Modular and Parameter-Efficient Fine-Tuning for NLP Models



Motivation: Why PEFT?

PEFT: Fine-tune a small amount of model parameters (instead of the entire
model) on a small dataset of downstream tasks. Other parameters are frozen.

Benefits:

o Reduce the computational and storage costs

o Mitigate catastrophic forgetting — forgetting often occur when the model changes a lot after
fine-tuning. PEFT can be regarded as a regularization on the difference between the two
checkpoints before and after PEFT.

o Easy to update models to new data and facts

o Better performance in low-data regimes

o  Comparable performance to full fine-tuning



To PEFT or not to PEFT?
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To PEFT or not to PEFT?
PEFT vs Fine-Tuning

Learnable parameters
Training Performance
Training Data
Training Time

Overfitting / forgetting

PEFT
A small subset
Close to fine-tuning
Small
Faster

Less prone to overfitting

Full Fine-tuning
Entire model
...is fine-tuning :P
Large
Longer training time

More prone to overfitting



Three Computation Functions

o]
E—
. J
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Slide from: EMNLP 2022 Tutorial on Modular and Parameter-Efficient Fine-Tuning for NLP Models



Three Computation Functions

Let a neural network fg : X — )V be decomposed into a composition of functions:

fo, © fo, © -+ © fo, Each has parameters 6;,i =1,...,1

A module with parameters qﬁ can modify the i-th sub-function as follows:
1. Function composition:  f; () = fo, © fe(x)  Function composition
2. Input composition: f ; () = fo. (|, P]) Concatenation

3. Parameter composition: f/(x) = fp,@e(x) Interpolation, e.g., element-wise addition

In practice, typically only the module parameters ¢ are updated while @ is fixed.

Slide from: EMNLP 2022 Tutorial on Modular and Parameter-Efficient Fine-Tuning for NLP Models



Three Computation Functions

Example Methods

Impact on Model Size

Performance

Function Composition Input Composition

Adapters, (IA)® Prompt Tuning, Prefix

Tuning
Additional modules in Context window of
layers model is increased

Matches or outperforms

. . Good with large models
fine-tuning

Parameter Composition

LoRA, QLoRA

No increase in model
size

Good

IEHo

[



Function Composition:
Adapters, (IA)°
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Adapter

e An adapter is a MLP 2
network.

e Add an adapter after the
feed-forward layer in each

Transformer layer

o

fo,(x) = WY (a(WPx))
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Houlsby et al ICML 2019. Parameter-Efficient Transfer Learning for NLP. https://arxiv.org/pdf/1902.00751.pdf
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Why does this work? One Possible Intuition

Oversimplified setting: Each
layer is a matrix which
transforms the input to a
new space

Adapters help “reroute” the
data embeddings to what

the upper layer expects

Second Layer

Second Layer

#
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_-~"Adapter
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First Layer

First Layer

NN

Original Data

New Data New Data



Adapters vs Full Fine-tuning
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He et al. ACL 2021. On the Effectiveness of Adapter-based Tuning for Pretrained Language Model Adaptation. https://arxiv.org/abs/2106.03164
Houlsby et al ICML 2019. Parameter-Efficient Transfer Learning for NLP. https://arxiv.org/pdf/1902.00751.pdf


https://arxiv.org/abs/2106.03164

Adapters vs Full Fine-tuning

Representation Space Comparison (SST-2)

o In practice, Adapters
change the embeddings
less than fine-tuning E
2 il
2
0.2 1
—4— Fine-tune vs Base
Adapter vs Base
0.0 1 : : : . . :
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BERT Layer

He et al. ACL 2021. On the Effectiveness of Adapter-based Tuning for Pretrained Language Model Adaptation. https://arxiv.org/abs/2106.03164



Adapters vs Full Fine-tuning
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Adapters are less sensitive to hyperparameters like learning rate

He et al. ACL 2021. On the Effectiveness of Adapter-based Tuning for Pretrained Language Model Adaptation. https://arxiv.org/abs/2106.03164


https://arxiv.org/abs/2106.03164

e Instead of learning a function, even

rescaling via element-wise

]
softAmax o

[ Nonlinearity ]

) (@

multiplication can be powerful:

e Allows the model to select

parameters that are more and less

important for a given task

Liu et al NeurlPS 2022. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. https://arxiv.org/abs/2205.05638



Input Composition:
Prompt-tuning,
Prefix-tuning




Motivation: Prompting!

Prompting with text: Prepending instructive words or demonstrations before
the actual test input

Standard prompting can be seen as finding a discrete text prompt
that—when embedded using the model’s embedding layer—yields @;
However, models are sensitive to the formulation of the prompt and to the
order of examples

Why not skip the words and directly learn an appropriate ¢;?



Prompt Tuning

Prompt tuning only updates a small
task-specific prompt parameters for
each task, enables mixed task
inference.

Fine-tuning (Model tuning): make a
task-specific copy of the entire
pre-trained LMs for each task, and
inference must be performed in

separate batches.
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Lester et al. EMNLP 2021. The Power of Scale for Parameter-Efficient Prompt Tuning. https://arxiv.org/abs/2104.08691
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Prompt Tuning vs Model Tuning

As model size increases (e.g., T5-XXL
11B model), prompt tuning of T5
(green curve) matches the
performance of (full model tuning
(red/ curves) on SuperGLUE.

Prompt design: few-shot in-context
prediction by GPT-3 (blue curve) is still

way worse than fine-tuning.
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Prefix Tuning / Multi-Layer Prompt Tuning

Fine-tuning

e Add learnable parameters at

Transformer (Translation)
F . . - = . H . .

the beginning of the input

Transformer (Summarization)
[\ [ 1 H . - . - - .

sequence over all Transformer e lonpe (Tathe iesi]

ayers, Frnrrnni

name Starbucks type coffee shop [SEP] Starbucks serves coffee

L U S e d iﬁe re nt p refi X Prefix Input (table-to-text) Output (table-to-text)

(Translation)

parameters for different tasks, AL

Prefix-tuning

Transformer (Pretrained)

and keep the other O
parameters frozen DD D U D D D D D D D

. . name Starbucks type coffee shop [SEP] Starbucks serves coffee
z — PREFI x , x, y ] Input (table-to-text) Output (table-to-text)

Li et al. ACL 2021. Prefix-Tuning: Optimizing Continuous Prompts for Generation. https://arxiv.org/pdf/2101.00190.pdf



Effective on NLG tasks w/ 0.1% parameters

e [Evaluate on three table-to-text generation datasets: E2E, WebNLG, and DART
e (Continuous prompts in later layers are more important

E2E WebNLG DART
BLEU NIST MET R-L CIDEr BLEU MET TER | BLEU MET TER | Mover BERT BLEURT
S U A S U A S U A
GPT-2mEDIUM
FINE-TUNE 682 862 462 71.0 247 |64.2 27.7 46.5 045 0.30 0.38 0.33 0.76 0.53| 46.2 0.39 0.46 0.50 0.94 0.39
FT-TOoP2 68.1 859 46.0 70.8 241 [53.6 189 36.0 0.38 0.23 0.31 049 0.99 0.72| 41.0 034 0.56 043 093 0.21

ADAPTER(3%) 689 871 46.1 713 247 [604 48.3 549 043 038 0.41 035 045 039| 452 038 046 050 0.94 0.39
ADAPTER(0.1%) 66.3 8.41 450 698 240 |54.5 451 50.2 039 0.36 0.38 0.40 046 0.43| 424 036 048 047 094 0.33
PREFIX(0.1%) 69.7 881 46.1 714 249 |629 456 55.1 044 0.38 0.41 035 049 041| 464 038 046 050 0.94 0.39

GPT-2p ARGE
FINE-TUNE 68.5 878 46.0 699 245 [65.3 43.1 555 0.46 0.38 0.42 0.33 0.53 042 47.0 039 046 0.51 094 0.40
Prefix 703 885 46.2 71.7 247 |63.4 47.7 56.3 045 0.39 0.42 034 048 040 46.7 039 0.45 0.51 094 0.40

SOTA 68.6 8.70 453 708 237 ’63.9 52.8 57.1 046 041 044 - - - | - - - - - -




Low-Data Setting

Performs comparative to
fine-tuning in low-data
regimes

Cool! But why?
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Low-Data Setting

Performs comparative to
fine-tuning in low-data
regimes

Cool! But why?
Fine-tuning is likely

overfitting.
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Parameter
Composition:
LoRA and Q-LoRA
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LoRA

First, what is the rank of a matrix?

/
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3 6 15
4 8 20
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Low Rank Adaptation

4 10

6 15

8 20
Rank = 1

First, what is the rank of a matrix?

\

2 5 11
3 7 16
4 9 21
Rank = 3

Full-rank




Low Rank Adaptation

e Approximate the self-attention update of a h | I
learnable weight by a low-rank matrix a Eﬂj %

AW = BA

Pretrained
h =Wyx + AWx = Wyx + BAx Weights
e Theinitial update is O
e After training, the updates are added back to

the original checkpoint. So, the inference cost

W € IRdXd

of the updated checkpoint is the same as the

original checkpoint.

Hu et al. ICLR 2021. LoRA: Low-Rank Adaptation of Large Language Models. https://arxiv.org/pdf/2106.09685.pdf



PeftModel(
(base_model): LoraModel(
(model): GPT2LMHeadModel(
(transformer): GPT2Model(

(wte): Embedding(50257, 768)

(wpe): Embedding(1024, 768)

(drop): Dropout(p=0.1, inplace=False)
(h): ModulelList(

]
(0-11): 12 x GPT2Block(
(ln_1): LayerNorm((768,), eps=1e-85, elementwise_affine=True)

(attn): GPT2Attention(

n (c_attn): lora.Linear(
(base_layer): Conv1D(nf=2304, nx=768)
(lora_dropout): ModuleDict(

(default): Identity()
)

n
u (lora_A): ModuleDict(
= (default): Linear(in_features=768, out_features=64, bias=False)

)
(lora_B): ModuleDict(
(default): Linear(in_features=64, out_features=2304, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()

Od e d e m O (lora_magnitude_vector): ModuleDict()
( ; )

(c_proj): ConvlD(nf=768, nx=768)
(attn_dropout): Dropout(p=0.1, inplace=False)

h e re ' (resid_dropout): Dropout(p=8.1, inplace=False)
)
]
]

(1n_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(mlp): GPT2MLP(

(c_fc): ConviD(nf=3072, nx=768)

(c_proj): ConviD(nf=768, nx=3072)

(act): NewGELUActivation()

(dropout): Dropout(p=0.1, inplace=False)


https://colab.research.google.com/drive/17Ell7BOrO1SUMKa6GZwpEHkRzHjPbOMJ?usp=sharing

LoRA works better than other PEFT

e GPT-2 Medium (355M) and Large (774M) models

Model & Method # Trainable E2E NLG Challenge

Parameters | BLEU NIST MET ROUGE-L  CIDEr
GPT-2 M (FT)* 35492M | 68.2 8.62 46.2 71.0 2.47
GPT-2 M (Adapter™)* 037M | 66.3 8.41 45.0 69.8 2.40
GPT-2 M (Adapter™)* 11.09M | 689 8.71 46.1 71.3 2.47
GPT-2 M (Adapter™) 11.09M | 673.¢ 85040, 46.01, 707+, 244,
GPT-2 M (FT™P2)* 25.19M | 68.1 8.59 46.0 70.8 2.41
GPT-2 M (PreLayer)* 035M | 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LoRA) 035M | 704.; 885.p 468., 71811 253, p
GPT-2 L (FT)* 77403M | 68.5 8.78 46.0 69.9 2.45
GPT-2 L (Adapter") 0.88M | 69.11; 868103 46319 Tl4i, 2494
GPT-2 L (Adapter") 23.00M | 68913 870104 46.11; 7131, 24510
GPT-2 L (PreLayer)* 0.77M | 70.3 8.85 46.2 71.7 2.47
GPT-2 L (LoRA) 077M | 704, 889.¢ 468., 720L, 247.ip




Why does this work? Intrinsic Dimensions

e |Intrinsic Dimensionality: Smallest d for which models achieve 90% of original accuracy

o Intrinsic dimensionality decreases during pre-training

o Larger models have lower intrinsic dimensionality

e [Essentially, weights are already low rank. So the new updates can be low rank too.

e Models can be optimized in a low-dimensional, randomly oriented subspace rather

than the full parameter space

Standard fine-tuning: Low-rank fine-tuning:

9P = 9P 4 9(P) 9P = 9P 4 py(d)

Li et al. ICLR 2018. Measuring the Intrinsic Dimension of Objective Landscapes. https://arxiv.org/abs/1804.08838
Aghajanyan et al. ACL 2021. Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. https://arxiv.org/abs/2012.13255


https://arxiv.org/abs/2012.13255

Intrinsic Dimensions

e Pre-training provides a strong initialization, i.e. a good 9(()D )in D dimensional

space
e Due to this, the model only needs to explore a subspace of d dimensions during

fine-tuning (through '@(9), to learn the final weights g(P)

®
S
N

Li et al. ICLR 2018. Measuring the Intrinsic Dimension of Objective Landscapes. https://arxiv.org/abs/1804.08838
Aghajanyan et al. ACL 2021. Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. https://arxiv.org/abs/2012.13255


https://arxiv.org/abs/2012.13255

Scaleto GPT-3175 B

Key benefit is the reduction in memory and storage usage:

@)

@)

@)

Do not need to store the gradients of the frozen parameters
Reduce the VRAM consumption from 1.2TB to 350GB during training

Use fewer GPUs and fewer I/O operations

But LoRA still requires forward computation and back-propagation.

©)

So, LoRA gives a 25% speedup (not 10x) compared to full fine-tuning.
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QLoRA: Further Reduce Memory Usage

e Convert information in a high-precision data type to a low-precision data type

e Allows training a LLM in a single consumer GPU, e.g., 33B LLAMA in a single 24GB GPU

Float 32

Sign Mantissa . Example:

) [TTTTTTTTTTTITITTITTITTIITI ]

1 bit 23 bits o 25 =25~ 101
Float 16 .

Sign Mantissa O Mantlssa - 25

£ e o Exponent -1

s s aad Sor o A e Convert to binary for
(11 _L]

1 bit 3 bits 1bit 2bits Storage

Image source: https://huggingface.co/blog/4bit-transformers-bitsandbytes



QLoRA

Define a quantization method to convert a 16-bit model into a 4-bit model, using CPU before training
Store the model weights in a special data type (4-bit NF), and compute the update using another data
type (16-bit BF)

Full Finetuning LoRA Al
(No Adapters)
ot T i,
f;;tzit) [:] D D *DE:])D
[ L] ] imen
s A
Pttt ~U7
= G e () e

16-bit Transformer 16-bit Transformer 4-bit Transformer Paging Flow ==

Figure 1: Different finetuning methods and their memory requirements. QLORA improves over LoRA by
quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.



QLoRA: Background

e Block-wise k-bit Quantization: discretize an input from a high-precision representation to a

low-precision representation.

o  Example: quantize a 32-bit float tensor into a 8-bit integer tensor with range [-127, 127] with a quantization
constant ¢ (input dependent).

127
absmax (XFP32)

X" = round ( XFP32> = round(c™? - X?),

o  Dequantization is the inverse operation:

P32 lnsy _ X FP32
nts) __ —
dequant(c™ 7, X)) = i X



QLoRA: Double Quantization

e Double Quantization: (1) first quantize the weight matrix, and (2) then further

quantize the quantization constants for additional memory savings.

o Example: using 32-bit constants and a blocksize of 64 for a weight W, quantization constants

add 32/64 = 0.5 bits per parameter on average

doubleDequant(ciF3?, &Pt WbY) — dequant(dequant(ciF32, c&Pit), Wit = WBFI6

Second dequantization

First dequantization



QLoRA

e (QLORA use a single linear layer in the quantized based model with a single LoRA

adapter (recall LoRA update: h =Wyx + BAx

YBF16 — XBF16doubleDequant(c§P32, Cg-bit, WNF4) 4 XBF16L]13F16L5F16,

e Summary: QLoRA has one storage data type (usually 4-bit NormalFloat) and
a computation data type (16-bit BrainFloat). They dequantize the storage
data type to the computation data type to perform the forward and backward
pass, but they only compute the weight gradients for the LORA parameters

which use 16-bit BrainFloat.



Fine-tuning a LLM in a single GPU

e Fine-tune a 65B LLM on a 48GB GPU (e.g., A6000)
e Fine-tune a 33B LLM on a 24GB GPU (e.g., RTX 3090, RTX 4090, A5000)

Model Size Elo

GPT-4 - 1348 + 1
Guanaco65B 41 GB 1022 +1
Guanaco 33B 21 GB 992 + 1
Vicuna 13B 26 GB 974 + 1

ChatGPT - 966 + 1
Guanaco 13B  10GB 916 =1
Bard 902 + 1

Guanaco 7B 6 GB 879 + 1




4-bit NF vs 4-bit Floating Point

Using the same amount of model
bits, 4-bit NF vyields better
performance than 4-bit Floating
point ( Vs blue curves).

Double quantization reduces the
memory footprint without degrading
performance VS green
curves). For instance, save ~3GB

GPU RAM for a 65B LLM
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Liu et al NeurlPS 2022. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. https://arxiv.org/abs/2205.05638



Aside:
Other ways to bypass
expensive fine-tuning



Alternative Adaptation Methods

e PEFT



Alternative Adaptation Methods

o PEFT
e Prompting, In-Context Learning
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Alternative Adaptation Methods

PEFT
Prompting, In-Context Learning
Retrieval Augmented Generation (RAG)
Model editing
o The process of changing knowledge or behaviour of a model, through
interventions, instead of any kind of learning
o Computationally/Parameter cheap

o Fine-grained control



Why Edit?

Computationally inexpensive

o Limited or no new parameters added to
model

o No training or tuning

Fine-grained control towards targeted
facts/behaviours

Possibly more faithful, due to a more
interpretable approach than black box

fine-tuning



Why Edit?

Computationally inexpensive

o Limited or no new parameters added to
model

o No training or tuning

Fine-grained control towards targeted
facts/behaviours

Possibly more faithful, due to a more
interpretable approach than black box

fine-tuning

Why Not Edit?

Superposition - Knowledge is
entangled in models, making it
hard to apply targeted
interventions

Stil a new field, with no
established methods yet

We don’t yet understand how
editing may  affect other
functionalities of a model



Editing

Knowledge
Edi}ing

External Weight Updates
Memory ‘

Constrained Locate then
Fine-Tuning Edit

Disclaimer: The Knowledge Editing taxonomy is from the mentioned survey
papers. However, the category of Behaviour Editing and its subcategories have
been defined as per the presenter’s understanding of the literature.

Behaviour Editing

Inference Time Weight Updates
Interventions

Activation Decoding
Editing Time

Knowledge Editing for Large Language Models: A Survey (Preprint, 2023)
Editing Large Language Models: Problems, Methods, and Opportunities (EMNLP 2023)
A Comprehensive Study of Knowledge Editing for Large Language Models (Preprint, 2024)



Treating Model Weights as Vectors

e [reating each model as a point in a high dimensional space, training is

considered as a vector from the pre-trained point to fine-tuned point

a) Task vectors

Q Ot

epre

T = eft - gprc

b) Forgetting via negation

T

O

Tnew = —T

Example: making a
language model produce
less toxic content

¢) Learning via addition
Tnew — TA + TB

TA

B

Example: building a
multi-task model

d) Task analogies

Tnew = TC + (TB - TA)

2

Example: improving
domain generalization

Editing models with task arithmetic. (ICLR, 2022).



More generally, the Linear Representation
Hypothesis

Task

Feature

Feature Feature

Some of these directions
correlate with interpretable
behaviours!

Feature

‘Steering’ activations in
these directions impacts
model performance

Discovering latent knowledge in language models without supervision. (ICLR 2022)
The linear representation hypothesis and the geometry of large language models. (NeurlPS, 2023)
Emergent linear representations in world models of self-supervised sequence models. (EMNLP, 2023)



An example in practice: Steering Attention
IHaaAe /|T|)

I IvAANULAVD \

Generate probing dataset for each e =

attention head in each layer &0

{Qiaaiayz' ffil (y € {0,1}—»{(3:{‘,@;)2- £V=]

Train binary linear classifier on these

75

70

datasets -

Significant number of heads (especially in -

earlier layers) show a high validation
=05
accuracy Head (sorted)

Inference-Time Intervention: Eliciting Truthful Answers from a Language Model (NeurlPS 2023)



Steering Attention Heads

Intervention on top ~50 heads of model (for
minimal invasiveness)
Best direction to steer: Vector from centroid of

False points to True points

Modify attention operation:
H

h=1 h=1

Theta - Steering/ truthful direction

Sigma - Std dev of top k head activations, along the truthful direction

Inference-Time Intervention: Eliciting Truthful Answers from a Language Model (NeurlPS 2023)



Steering Attention Heads

With LLaMA models and <100 samples, significantly reduces falsehoods on TruthfulQA (more than SFT

and Prompting), and mildly on other distributions.

True*Info (%) True (%) MCacc. (%) CE KL

Alpaca 323 327 21.8 256 0.0
Alpaca + ITI 65.1 66.6 31.9 2.92 .61
Vicuna 543 55.6 335 263 0.0
Vicuna + ITI 74.0 88.6 38.9 336 141
True*Info (%) True (%) MCacc. (%) CE KL
Baseline 30.5 31.6 25.7 216 0.0
Supervised Finetuning 36.1 47.1 24.2 2.10 0.01
Few-shot Prompting 49.5 49.5 2.5 - -
Baseline + ITI 43.5 49.1 259 248 040
Few-shot Prompting + ITI 514 53.5 32.5 - -

Table 1: Comparison with baselines that utilize 5% of Truthful QA to make LLaMA-7B more truthful.
CE is the pre-training loss; KL is the KL divergence between next-token distributions pre- and
post-intervention. Results are averaged over three runs. We report standard deviations in Appendix D.

Inference-Time Intervention: Eliciting Truthful Answers from a Language Model (NeurlPS 2023)
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