CS769 Advanced NLP

Modeling Long Sequences

(Document-Level Models)

Junjie Hu

Slides adapted from Zhengzhong, Graham https://junjiehu.github.io/cs769-fall23/

Goal for Today

- 1. Document-level Neural Language Modeling
 - RNN-based Models
 - Transformer-based Models
- 2. Other Document-level Tasks
 - Entity Coreference
 - Discourse Parsing

Some NLP Tasks we've Handled

Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, 'and what is the use of a book,' thought Alice 'without pictures or conversation?'

```
P(w_{i+1}= of \mid w_i=tired) = 1

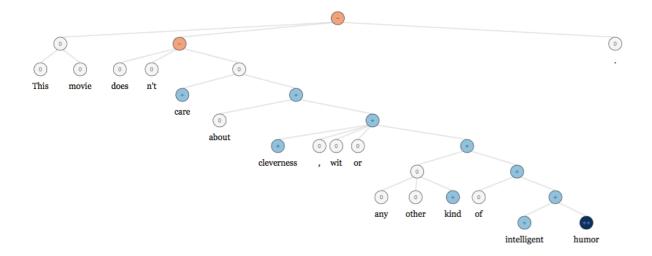
P(w_{i+1}= of \mid w_i=use) = 1

P(w_{i+1}= sister \mid w_i=her) = 1

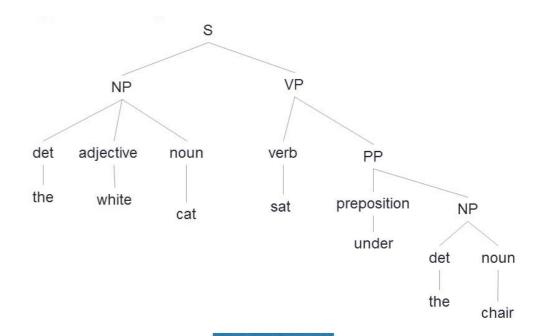
P(w_{i+1}= beginning \mid w_i=was) = 1/2
```

 $P(w_{i+1}=bank \mid w_i=the) = 1/3$ $P(w_{i+1}=book \mid w_i=the) = 1/3$ $P(w_{i+1}=use \mid w_i=the) = 1/3$

Language Models



Classification



Parsing

Germany's representative to the European Union's veterinary committee Werner Zwingman said on Wednesday consumers should ...

Entity Tagging

Some Connections to Tasks over Documents

Prediction using documents

- Document-level language modeling: Predicting language on the multi-sentence level (c.f. singlesentence language modeling)
- **Document classification:** Predicting traits of entire documents (c.f. sentence classification)
- Entity coreference: Which entities correspond to eachother? (c.f. NER)
- **Discourse parsing:** How do segments of a document correspond to each-other? (c.f. syntactic parsing)

Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, 'and what is the use of a book,' thought Alice 'without pictures or conversation?'

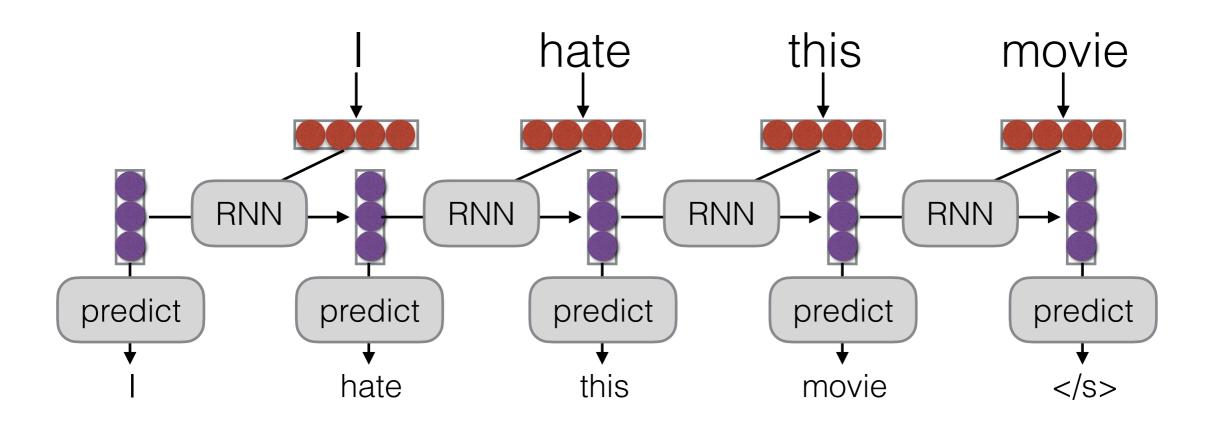
Document Level Language Modeling

Document Level Language Modeling

- We want to predict the probability of words in an entire document
- Obviously sentences in a document don't exist in a vacuum! We want to take advantage of this fact.

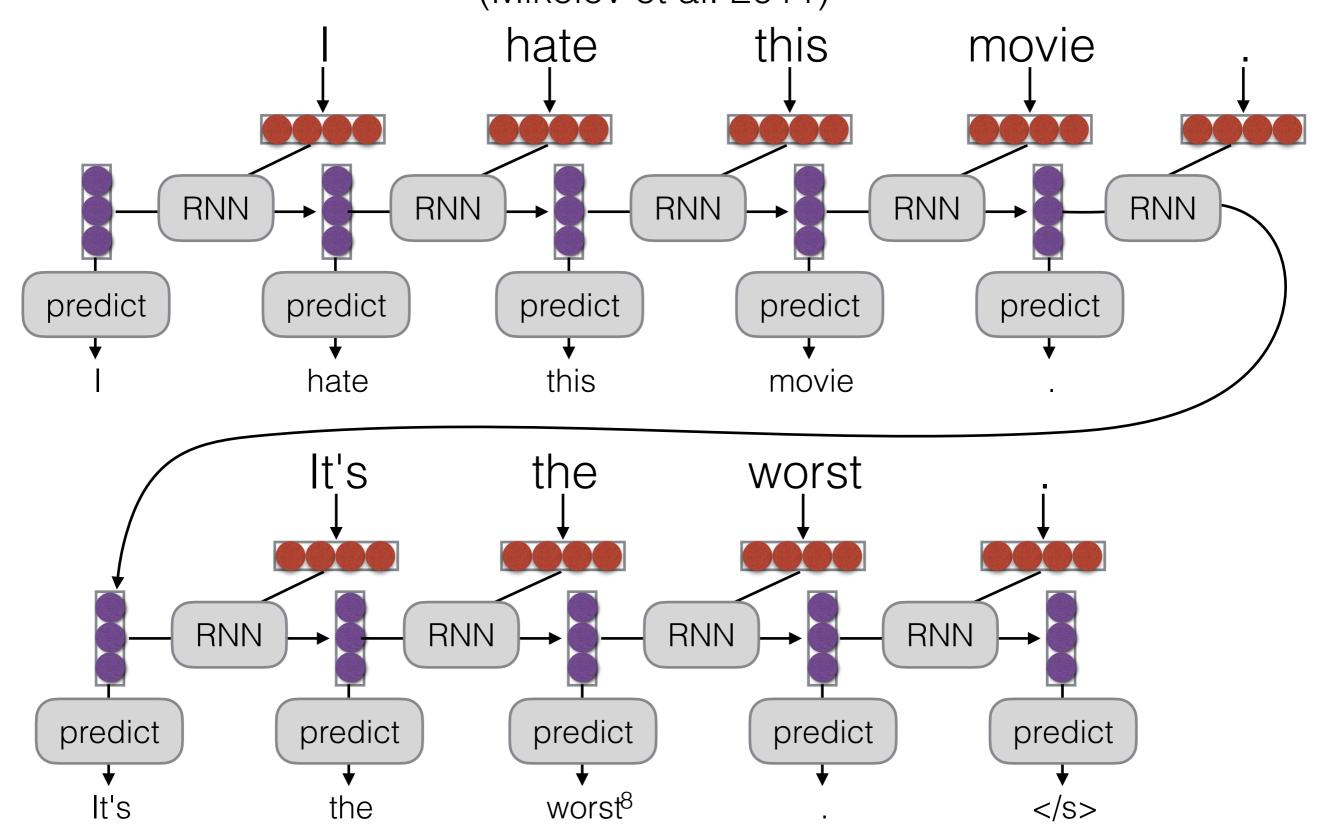
Remember: Modeling using Recurrent Networks

Model passing previous information in hidden state



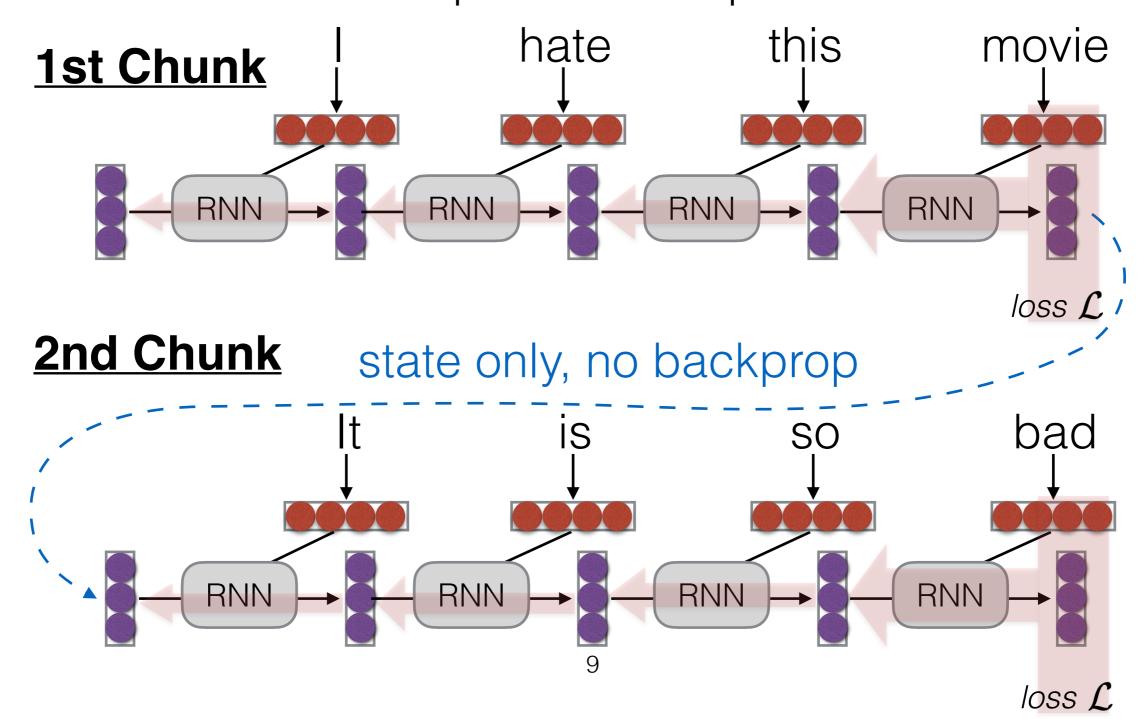
Simple: Infinitely Pass State by RNN LM

(Mikolov et al. 2011)



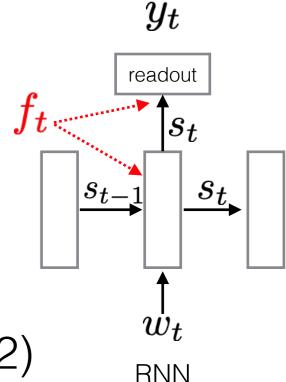
Truncated Backpropagation Through Time (TBPTT) (Elman 1990, Boden 2001)

 The backpropagation update is performed back for a fixed number of past time steps.



Separate Encoding for Coarsegrained Document Context

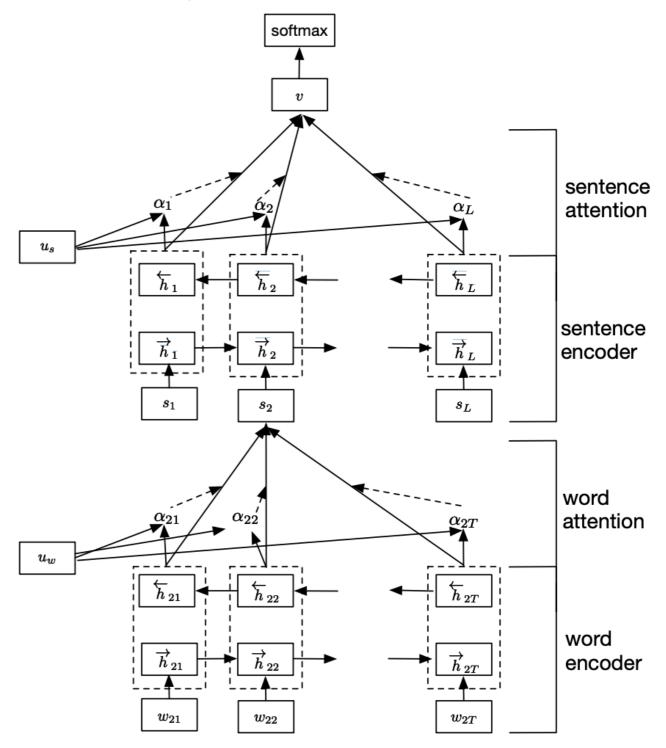
- Explicitly add the external global features f_t as input to
 - 1. each RNN cell
 - 2. The final readout linear layer
- What global context?
 - Use topic modeling (Mikolov & Zweig 2012)
 - Use bag-of-words of previous sentence(s), optionally with attention (Wang and Cho 2016)
 - Use last state of previous sentence (Ji et al. 2015)



Hierarchical Attention Network

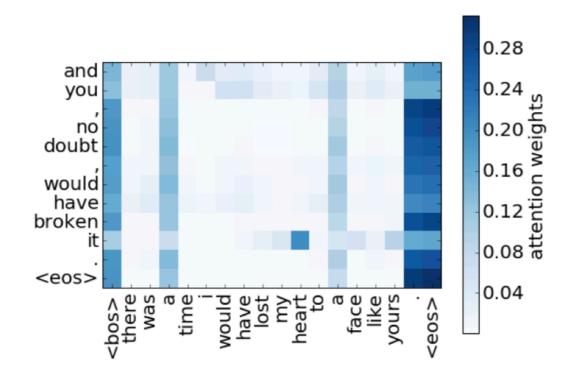
(Yang et al. 2018)

- One word-level BiGRU to encode words within a sentence
- Learn a weighted sum of word hidden vectors as the sentence representation.
- One sentence-level BiGRU to encode sentences within a document
- Weighted sum of sentence hidden vectors as the doc representation.



Transformers Across Sentences

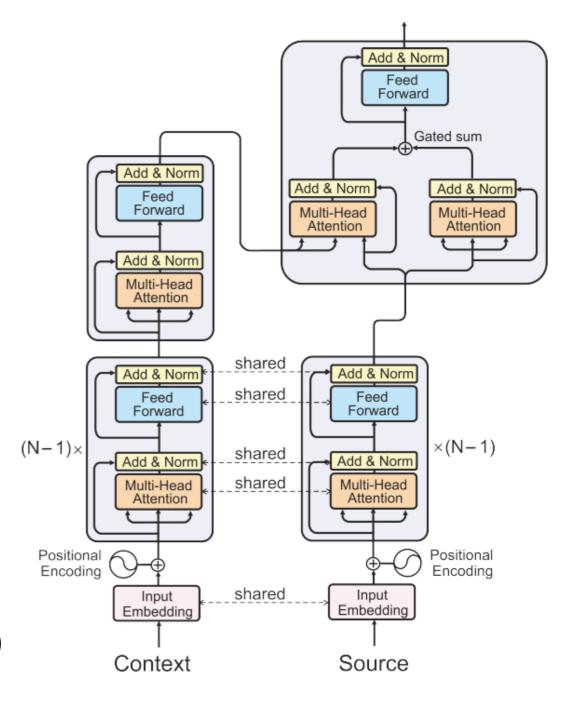
- Simply self-attend to all words in the document
 - + Can simply use document-level context
 - + Can learn interesting phenomena (e.g. co-reference)



• - Computation of the attention matrix is quadratic in sequence length $O(L^2)!$

Encode Context and Source Separately (Elena et al. 2018)

- Use two Transformer encoders to encode the context and current source sentence separately instead of a combined document.
- Share the first N-1 layers for the two encoders.
- Context: previous/next sentence, or random sentence in the doc
- + Reduce the computation from quadratic of doc length $O(L^2)$ to quadratic of sentence length $O(l^2)$



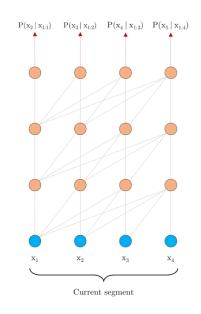
Transformer-XL: Truncated BPTT+Transformer

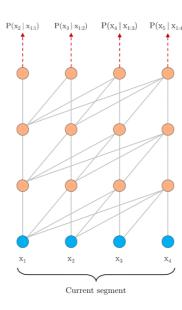
(Dai et al. 2019)

- Standard Transformer: encode each chunk separately
- Transformer-XL: attend to fixed vectors from the previous sentence

Standard Transformer

<u>Transformer-XL</u>

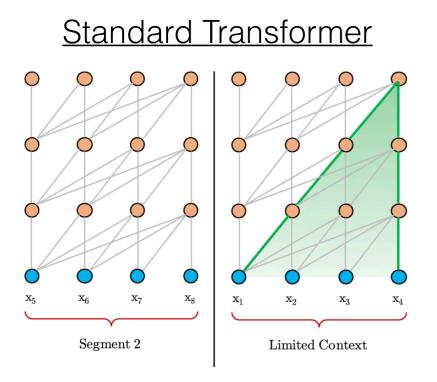


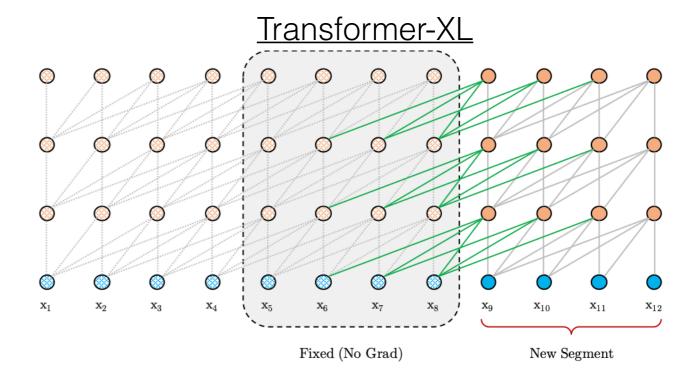


Transformer-XL: Truncated BPTT+Transformer

(Dai et al. 2019)

Like truncated backprop through time for RNNs;
 can use previous states, but not backprop into them

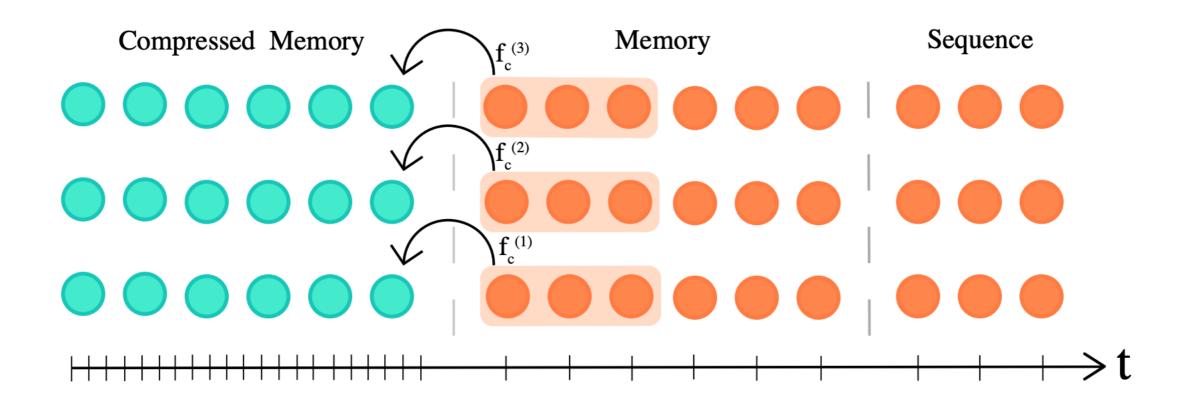




- How far away can Transformer-XL look back?
 - $O(N \times l)$, N is the no. of layers, l is the no. of words in a chunk

Compressing Previous States

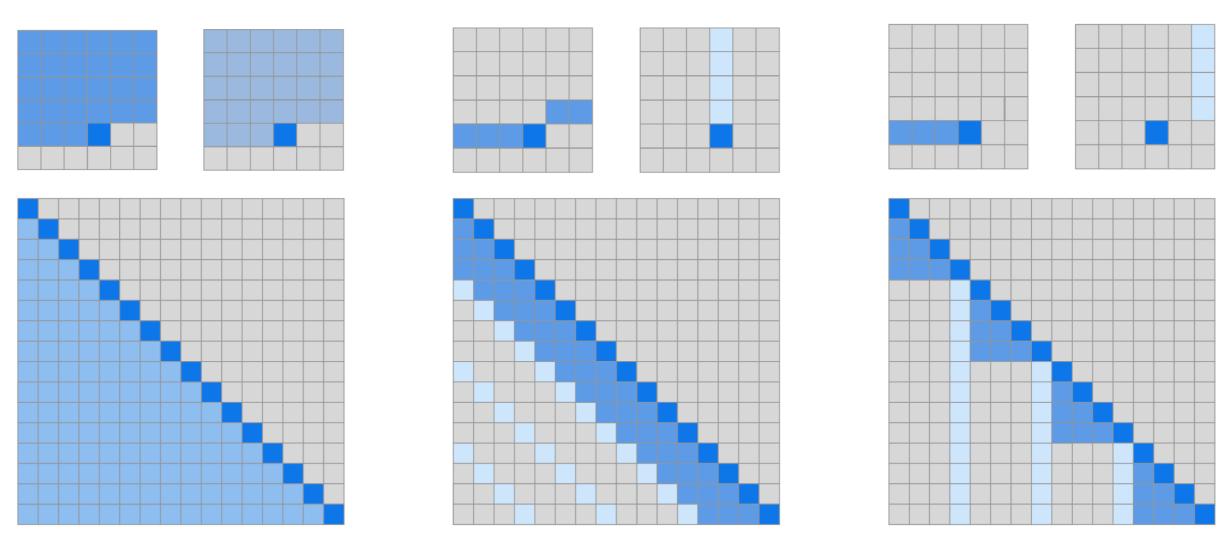
- Extension over Transformer-XL that uses the last chunk as the memory
- Add a "strided" compression step over previous states (Rae & Potapenko et al. 2019)



Sparse Transformers

(Child et al. 2019)

Add "stride", only attending to every n previous states



Adaptive Span Transformers

 Can make the span adaptive attention head by attention head some are short, some long (Sukhbaatar et al. 2019)

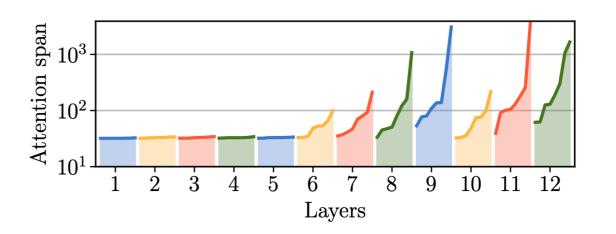
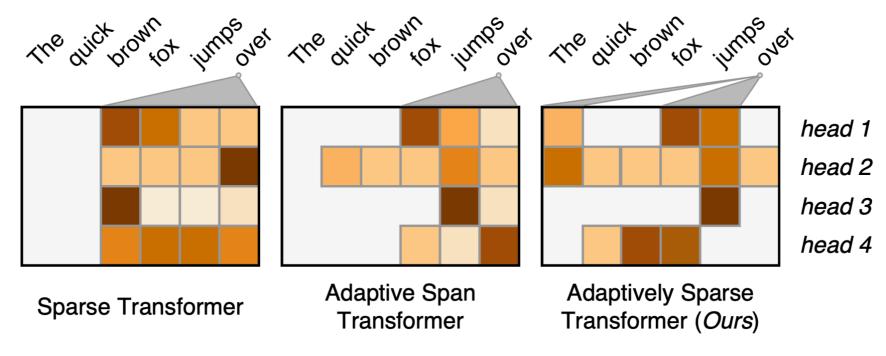


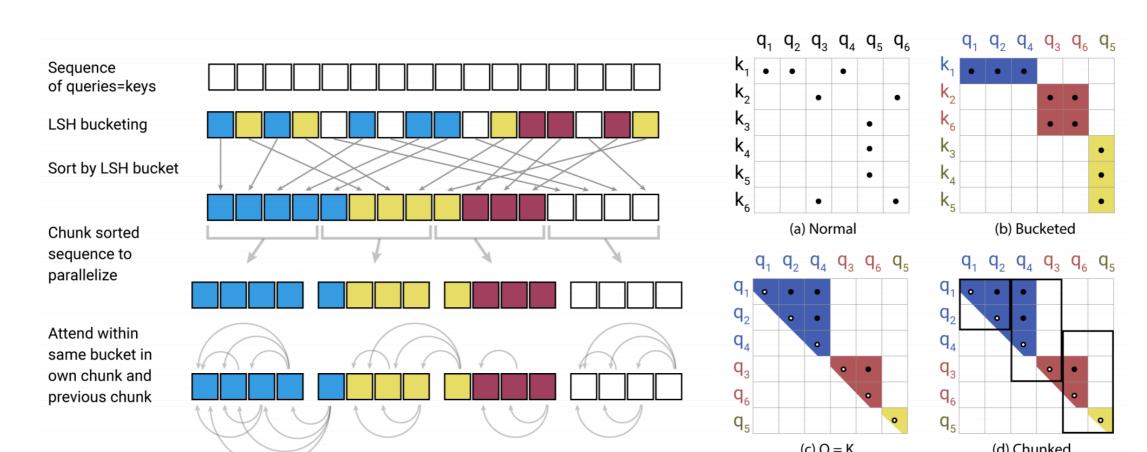
Figure 4: Adaptive spans (in log-scale) of every attention heads in a 12-layer model with span limit S=4096. Few attention heads require long attention spans.

Can be further combined with sparse computation (Correira et al. 2019)



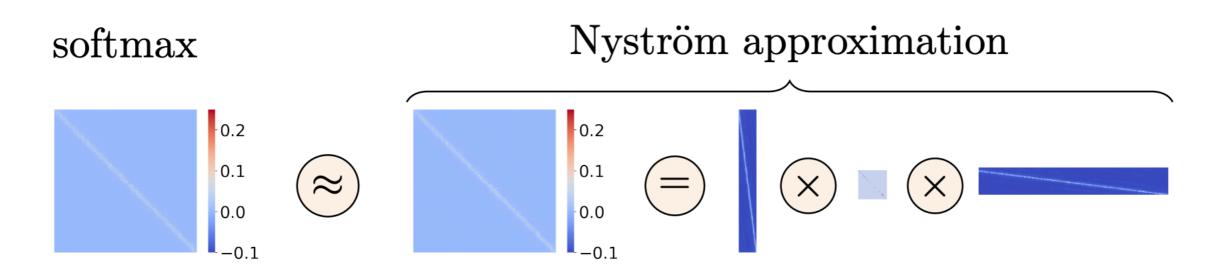
Reformer: Efficient Adaptively Sparse Attention

- Chicken-and-egg problem in sparse attention:
 - Can sparsify relatively low-scoring values to improve efficiency
 - Need to calculate all values to know which ones are relatively low-scoring
- **Reformer** (Kitaev et al. 2020): efficient calculation of sparse attention through
 - Shared key and query parameters to put key and query in the same space
 - Locality sensitive hashing to efficiently calculate high-scoring attention weights
 - Chunking to make sparse computation more GPU friendly



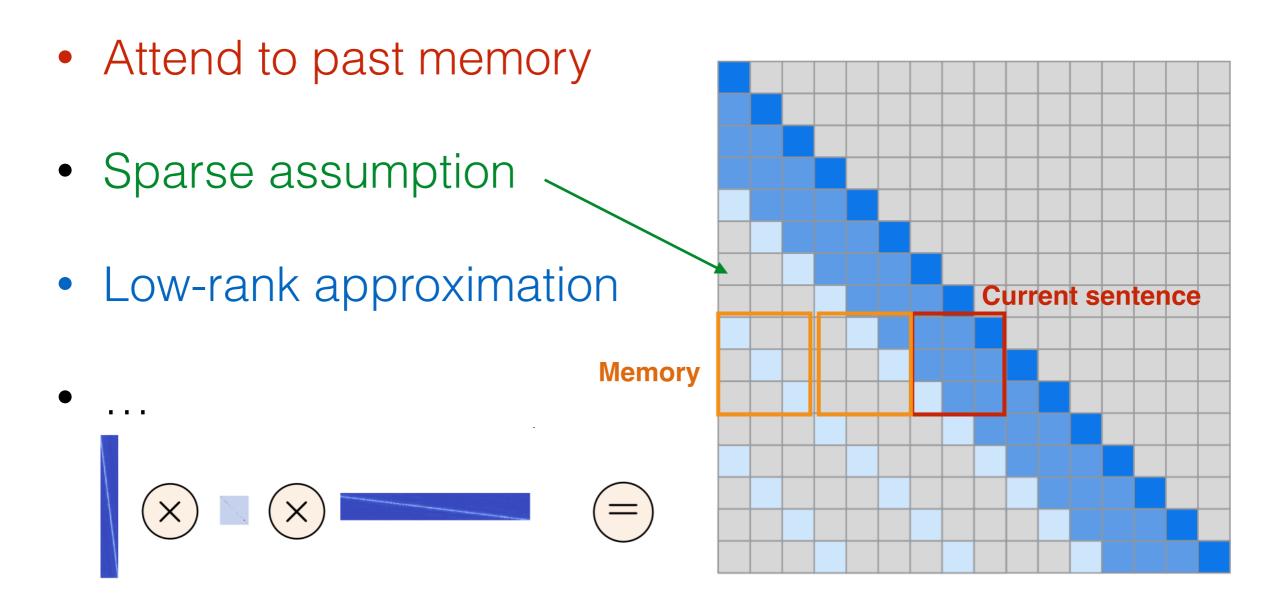
Low-rank Approximation

- Calculating the attention matrix is expensive, can it be predicted with a low-rank matrix?
- Linformer: Add low-rank linear projections into model (Wang et al. 2020)
- Nystromformer: Approximate using the Nystrom method, sampling "landmark" points (Xiong et al. 2021)



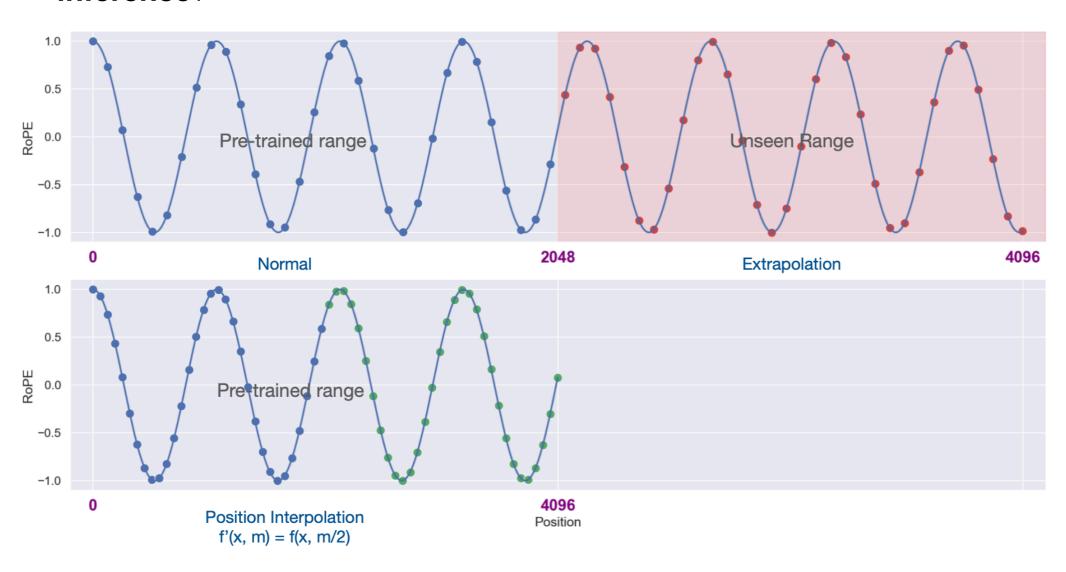
Summary

 The current bottleneck of Transformer-based model for long sequences is the computation of attention matrix



Length Extension at Inference

 Position Interpolation: What about extending the context length of a trained LLM at inference?

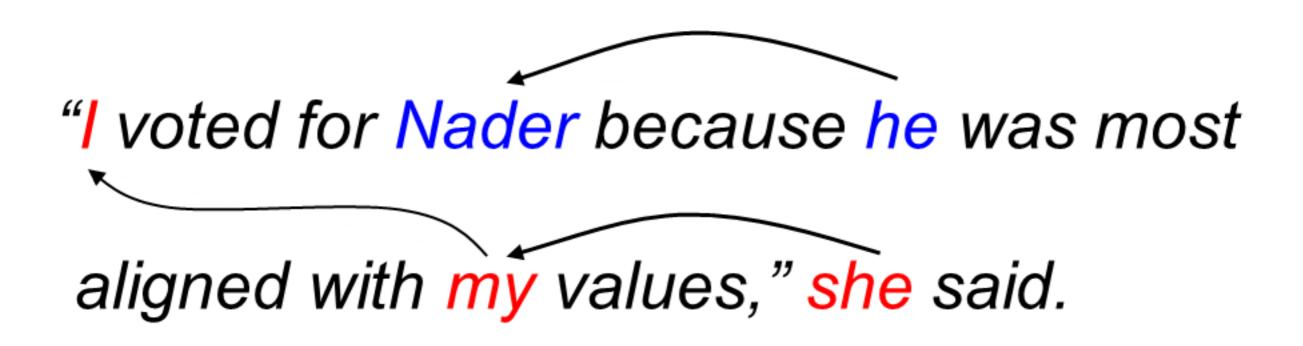


$$\mathbf{f}'(\mathbf{x},m) = \mathbf{f}\left(\mathbf{x}, \frac{mL}{L'}\right).$$

f() is the function that takes in a word embedding x, and a position index, and returns an embedding with positional information

How to Evaluate Documentlevel Models?

- Simple: Perplexity, classification over long documents
- More focused:
 - Sentence scrambling (Barzilay and Lapata 2008)
 - Final sentence prediction (Mostafazadeh et al. 2016)
 - Final word prediction (Paperno et al. 2016)
- Composite benchmark containing several task: Long range arena (Tay et al. 2020)



Entity Coreference

Document Problems: Entity Coreference

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch.

<u>A renowned speech therapist</u> was summoned to help the King overcome his <u>speech impediment</u>...

Example from Ng, 2016

- Step 1: Identify Noun Phrases mentioning an entity (note the difference from <u>named</u> entity recognition).
- Step 2: Cluster noun phrases (mentions) referring to the same underlying world entity.

Mention(Noun Phrase) Detection

<u>A renowned speech therapist</u> was summoned to help the King overcome his speech impediment...

<u>A renowned speech</u> therapist was summoned to help the King overcome his speech impediment...

- One may think coreference is simply a clustering problem of given Noun Phrases.
 - Detecting relevant noun phrases is a difficult and important step.
 - Knowing the correct noun phrases affect the result a lot.
 - Normally done as a preprocessing step.

Components of a Coreference Model

- Like a traditional machine learning model:
 - We need to know the instances (e.g. shiftreduce operations in parsing).
 - We need to design the features.
 - We need to optimize towards the evaluation metrics.
 - Search algorithm for structure

Advantages of Neural Network Models for Coreference

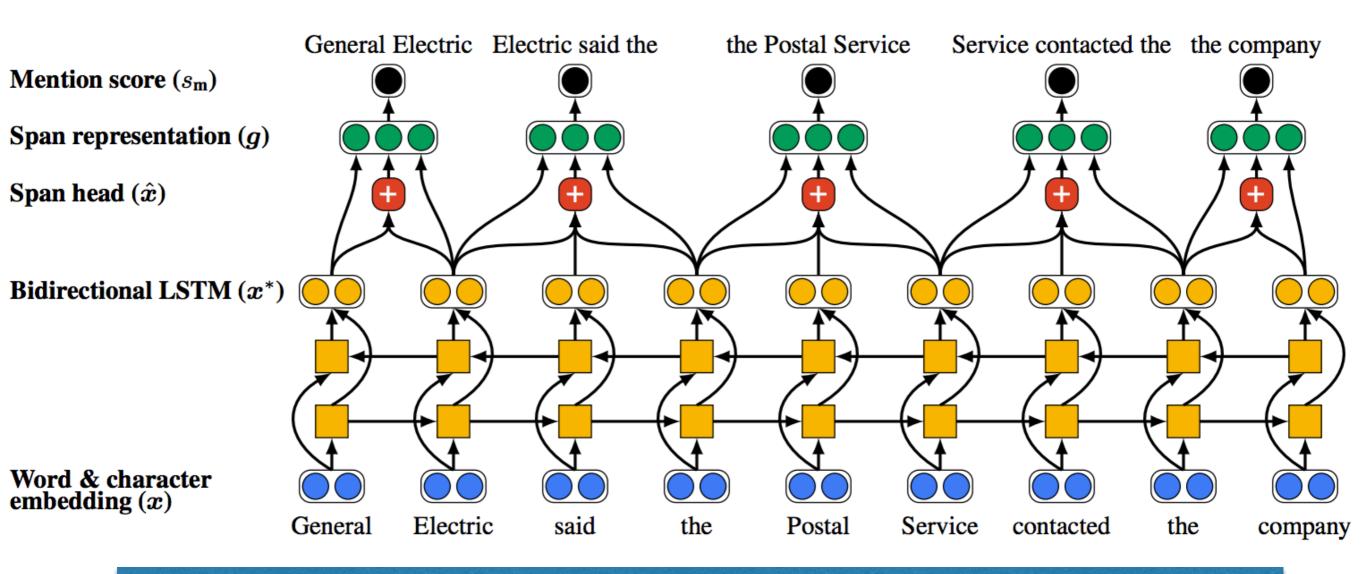
- Learn the features with embeddings since most of them can be captured by surface features.
- Train towards the metric using reinforcement learning or margin-based methods.
- Jointly perform mention detection and clustering.

End-to-End Neural Coreference

Lee et.al (2017)

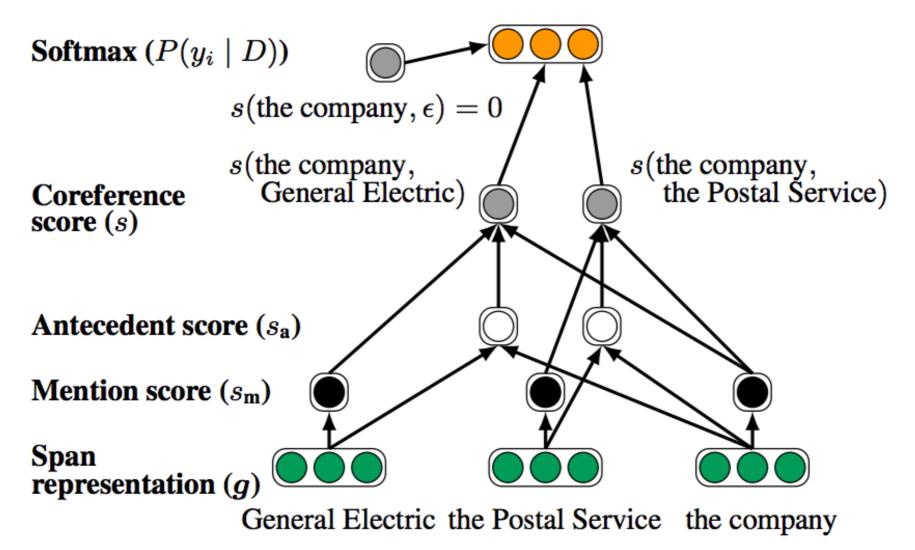
- 2 main contributions by this paper:
 - Learning all features of spans by a more typical neural network
 - Neural network allow errors to flow end-to-end.
 Jointly train with mention detection and coreference label classification
 - + This solves another type of error (span error), which is not previously handled.

End-to-End Neural Coreference (Span Model)

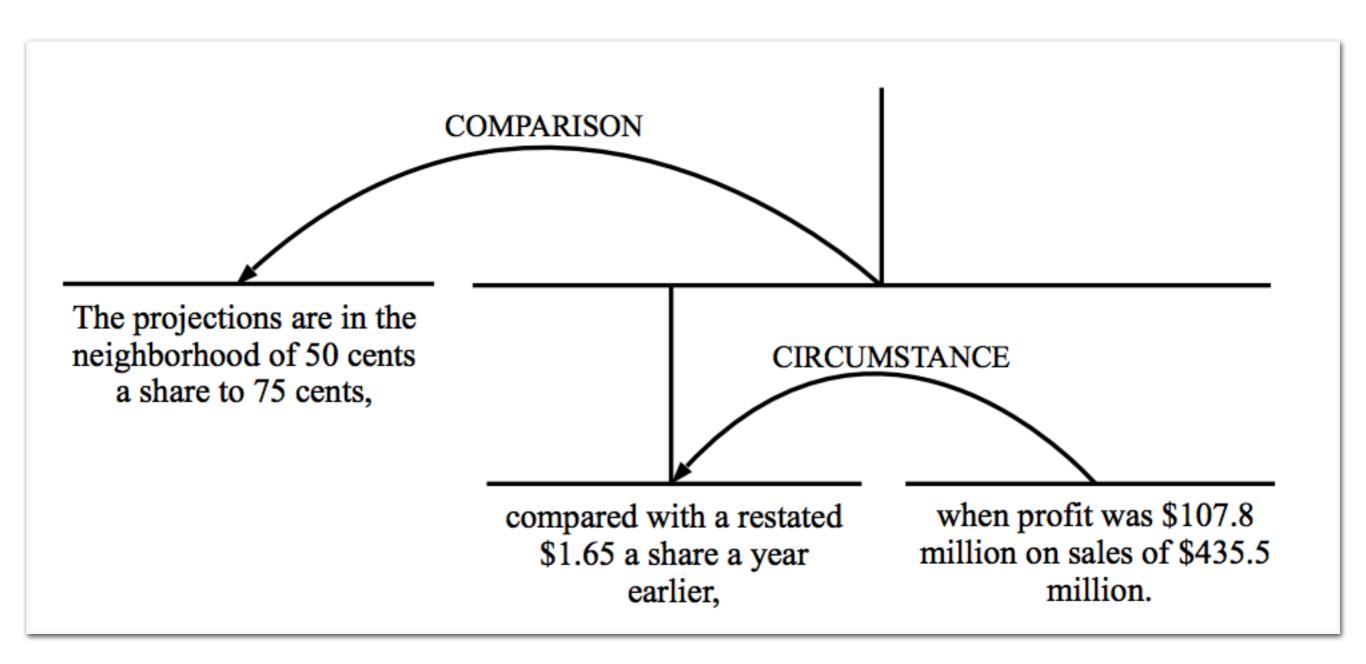


- Build mention representation from word representation (all possible spans)
- Head extracted by self-attention.

End-to-End Neural Coreference (Coreference Model)

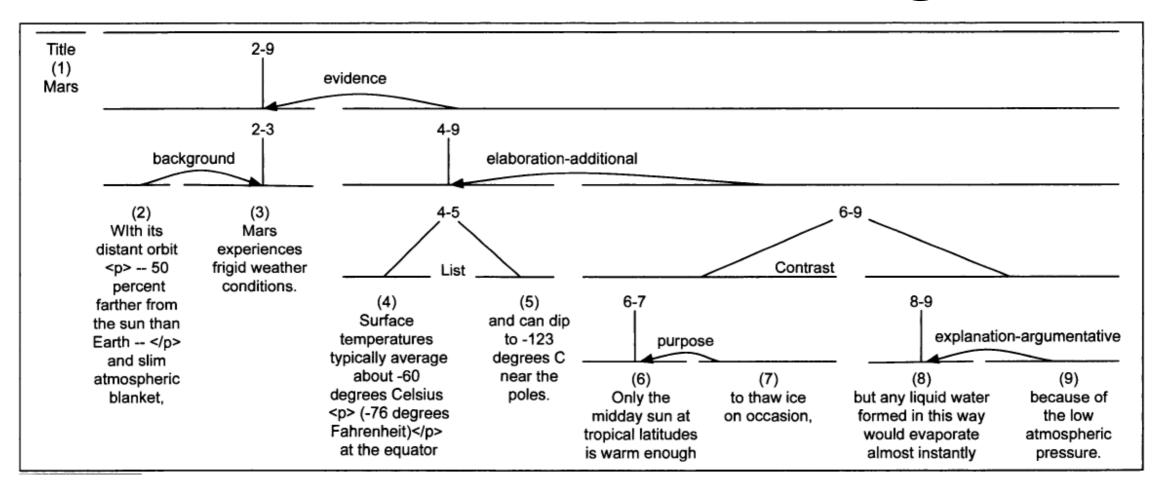


- Coreference model is similar to a mention ranking.
- Coreference score consist of multiple scores.
- Simple max-likelihood



Discourse Parsing

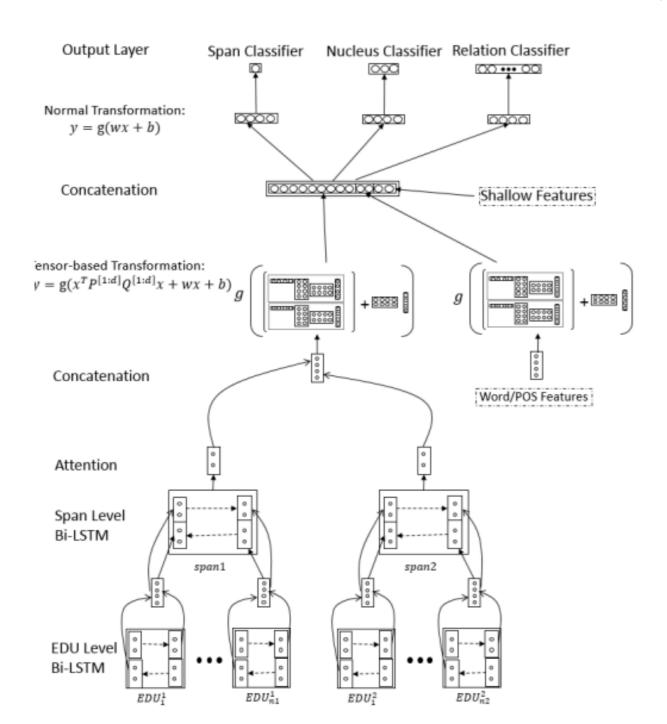
Document Problems: Discourse Parsing



- Parse a piece of text into a relations between elementary discourse units (EDUs).
- Researchers mainly used the Rhetorical Structure Theory (RST) formalism, which forms a tree of relations.

Discourse Parsing w/ Attentionbased Hierarchical Neural Networks

Li et.al (2016)



- Hierarchical bi-LSTM to learn composition scoring.
- Augmented with attention mechanism. (Span is long)
- 2 Bi-LSTMs: first used to capture the representation of a EDU, then combine EDU representation into larger representation
- CKY Parsing

Questions?