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Goals for Today
• Prompting vs other machine learning paradigms in NLP
• General Workflow of Prompting
• Key Components of Prompting

1. Pre-trained Model Choice
2. Prompt Engineering
3. Answer Engineering
4. Expanding the Paradigm
5. Prompt-based Training Strategies
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Recommended Reading
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Four Paradigms of NLP Technical Development
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■ Feature Engineering
■ Architecture Engineering
■ Objective Engineering
■ Prompt Engineering



Feature Engineering
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■ Paradigm: Fully Supervised Learning (Non-neural Network)
■ Time Period: Most popular through 2015
■ Characteristics:
■ Non-neural machine learning models mainly used
■ Require manually defined feature extraction 

■ Representative Work:
□ Manual features -> linear or kernelized support vector machine (SVM)

□ Manual features -> conditional random fields (CRF)



Architecture Engineering
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■ Paradigm: Fully Supervised Learning (Neural Networks)
■ Time Period: About 2013-2018
■ Characteristics:
□Rely on neural networks

□Do not need to manually define features, but should modify the network structure (e.g.: 
LSTM v.s CNN)

□Sometimes used pre-training of LMs, but often only for shallow features such as 
embeddings

■ Representative Work:
□CNN/LSTM for Text Classification

□Transformer for Machine Translation



Objective Engineering
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■ Paradigm: Pre-train, Fine-tune
■ Time Period: 2017-Now
■ Characteristics:
□Pre-trained LMs (PLMs) used as initialization of full model - both shallow and 

deep features

□Less work on architecture design, but engineer objective functions  

■ Typical Work:
■ BERT → Fine Tuning



Prompt Engineering
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■ Paradigm: Pre-train, Prompt, Predict
■ Date: 2019-Now
■ Characteristic:
□NLP tasks are modeled entirely by relying on LMs

□The tasks of shallow and deep feature extraction, and prediction of the data are all 

given to the LM 

□Engineering of prompts is required

■ Representative Work:
□GPT3, GPT4, ChatGPT



What is Prompting？

□Encouraging a pre-trained model to make particular predictions by 

providing a "prompt" specifying the task to be done.
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What  is the general workflow of Prompting?
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■ Prompt Addition
■ Answer Prediction
■ Answer-Label Mapping



Prompt Addition
■ Prompt Addition: Given input x, we transform it into prompt x’ through 

two steps: 
□Define a template with two slots, one for input [x], and one for the answer [z] 

□Fill in the input slot [x]
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Example: Sentiment Classification
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Input:  x = “I love this movie”

Template:  [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it 
was a [z] movie.”



Answer Prediction
■ Answer Prediction: Given a prompt, predict the answer [z]
□ Fill in [z]
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Example
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Input:  x = “I love this movie”

Template:  [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it 
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it 
was a fantastic movie.”



Mapping
■ Mapping: Given an answer, map it into a class label
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Example
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Input:  x = “I love this movie”

Template:  [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it 
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it 
was a fantastic movie.”

Mapping: fantastic => Positive



Types of Prompts
■ Cloze Prompt: I love this movie. Overall it was a [z] movie 

Example outputs: 
□ I love this movie. Overall it was a boring movie 
□ I love this movie. Overall it was a fantastic movie 

■ Prefix Prompt: I love this movie. Overall this movie is [z]
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Design Considerations for Prompting
■ Pre-trained Model Choice
■ Prompt Template Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies
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■ Pre-trained Model Choice
■ Prompt Template Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies
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Design Considerations for Prompting



■ Pre-trained Model Choice
■ Prompt Template Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies
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Design Considerations for Prompting



Pre-trained Language Models
Popular Frameworks 

■ (Left-to-Right) Autoregressive LM
■ Masked LM
■ Prefix LM
■ Encoder-decoder LM
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(Left-to-right) Autoregressive Language Model
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■ Characteristics: 
□ First proposed by Markov (1913)

□ Count-based-> Neural network-based

□ Specifically suitable to highly larger-scale LMs

■ Example:GPT-1,GPT-2,GPT-3, GPT-4  

■ Roles in Prompting Methods
□ The earliest architecture chosen for prompting

□ Usually equipped with prefix prompt and the parameters of PLMs are fixed



Masked Language Model
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■ Characteristics:
□ Unidirectional -> bidirectional prediction

□ Suitable for NLU tasks

■ Example: 
□ BERT, ERNIE

■ Roles in Prompting Methods
□ Usually combined with Cloze prompt

□ Suitable for NLU tasks, which should be reformulated into a cloze task



Prefix Language Model
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■ Characteristics: 
□ A combination of Masked & Left-to-right

□ Use a Transformer but two different mask mechanisms to 

handle text X and y separately

□ Corruption operations can be introduced when encoding X

■ Examples: 
□ UniLM 1,2, ERNIE-M



Encoder-Decoder LM
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■ Characteristics: 
□ A denoised auto-encoder

□ Use two Transformers and two different mask mechanisms 

to handle text X and y separately

□ Corruption operations can be introduced when encoding X

■ Examples: 
□ BART, T5



Encoder-Decoder Pre-training Methods
Representative Methods 

■ MASS
■ BART (mBART)
■ UniLM
■ T5 (mT5, FlanT5)
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MASS 
（Song et al. 2019）

• Model: Transformer-based Encoder-decoder 

• Objective: only predict masked spans 

• Data: WebText



BART 
(Lewis et al. 2019)

• Model: Transformer-based encoder-decoder model 

• Objective: Re-construct (corrupted) original 
sentences 

• Data: similar to RoBERTa (160GB): BookCorpus, CC-
NEWs, WebText, Stories

Different CorruptionFramework



mBART(Liu et al. 2021)

• Model: Transformer-based Multi-lingual Denoising 
auto-encoder 

• Objective: Re-construct (corrupted) original 
sentences 

• Data: CC25 Corpus (25 langauges)



UNiLM 
（Dong et al. 2019）

• Model: Prefix LM (a.k.a. Seq2seq LM), left-to-right LM, Masked LM 

• Objective: three types of LMs, shared parameters 

• Data: English Wikipedia and BookCorpus



T5 
( Raffel et al. 2020)

• Convert all tasks to sequence-to-sequence prediction



T5 
( Raffel et al. 2020)

• Model: left-to-right LM, Prefixed LM, encoder-decoder 

• Objective: explore different objectives respectively 

• Data: C4 (750G) + Wikipedia + RealNews + WebText



T5 
( Raffel et al. 2020)

• Model: left-to-right LM, Prefix LM, encode-decoder 

• Objective: explore different objectives respectively 

• Data: C4 (750G) + Wikipedia + RealNews + WebText



Application of Prefix LM/Encoder-Decoders in Prompting
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■ Conditional Text Generation
□ Translation

□ Text Summarization

■ Generation-like Tasks
□ Information Extraction

□ Question Answering



Design Considerations for Prompting
■ Pre-trained Model Choice
■ Prompt Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies

35



Traditional Formulation V.S Prompt Formulation
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Input:  x = “I love this movie”

Template:  [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it 
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it 
was a fantastic movie.”

Mapping (answer -> label):  
fantastic => Positive

Input:  x = “I love this movie”

Predicting:  y = Positive
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Input:  x = “I love this movie”

Template:  [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it 
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it 
was a fantastic movie.”

Mapping (answer -> label):  
fantastic => Positive

Input:  x = “I love this movie”

Predicting:  y = Positive

How to define a 
suitable prompt 

template?

Traditional Formulation V.S Prompt Formulation



Prompt Template Engineering
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How to search for 
appropriate prompt 
templates?

How to define the 
shape of a prompt 
template?



Prompt Shape
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■ Cloze Prompt
□ prompt with a slot [z] to fill in the 

middle of the text as a cloze prompt,

■ Prefix Prompt
□ prompt where the input text comes 

entirely before slot [z]

I love this movie. Overall it was a [z] movie

I love this movie. Overall this movie is [z]



Design of Prompt Templates
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■ Hand-crafted
□ Configure the manual template based on the characteristics of the task

■ Automated search
□ Search in discrete space

□ Search in continuous space



Representative Methods for Prompt Search
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■ Prompt Mining
■ Prompt Paraphrasing
■ Gradient-based Search
■ Prompt/Prefix Tuning



Prompt Mining (Jiang et al. 2019)
• Mine prompts given a set of questions/answers 
• Middle-word 

 Barack Obama was born in Hawaii. ! [X] was born in [Y]. 
• Dependency-based 

 The capital of France is Paris. ! capital of [X] is [Y].
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Prompt Paraphrasing (Jiang et al. 2019)
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• Paraphrase an existing prompt to get other candidates 
• e.g. back translation with beam search

[X] shares a border with [Y]. en-de 
model

de-en 
model

[X] has a common border with [Y]. 
[X] adjoins [Y]. 

……



Gradient-based Search —AutoPrompt (Shin et al. 2020)

• Automatically optimize arbitrary prompts based on existing words
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Prefix/Prompt Tuning (Li and Liang 2021, Lester et al. 2021)

• Optimize the 
embeddings of a 
prompt, instead of the 
words.  

• "Prompt Tuning" 
optimizes only the 
embedding layer, "Prefix 
Tuning" optimizes prefix 
of all layers
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Design Considerations for Prompting
■ Pre-trained Model Choice
■ Prompt Template Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies
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Answer Engineering
■ Why do we need answer 

engineering?
□ We have reformulated the task!  We also 

should re-define the “ground truth labels”
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Traditional Formulation V.S Prompt Formulation

48

Input:  x = “I love this movie”

Template:  [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it 
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it 
was a fantastic movie.”

Mapping (answer -> label):  
fantastic => Positive

Input:  x = “I love this movie”

Predicting:  y = Positive



Traditional Formulation V.S Prompt Formulation
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Positive

Negative

Label Space (Y)

Interesting 
Fantastic 

Happy

Boring 
1-star 

…

Answer Space (Z)



Answer Engineering
■ Why do we need answer 

engineering?
□ We have reformulate the task!  We also 

should re-define the “ground truth labels”

■ Definition:
□ aims to search for an answer space and a 

map to the original output Y that results in 

an effective predictive model
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Design of Prompt Answer
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How to define the 
shape of an answer?

How to search for 
appropriate answers?



Answer Shape
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■ Token: Answers can be one token in the pre-trained language 
model vocabulary 

■ Chunk: Answers can be chunks of words made up of more than 
one tokens
□ Usually used with the Cloze prompt

■ Sentence: Answers can be a sentence of arbitrary length
□ Usually used with prefix prompt (seq2seq LM for generative tasks)



Answer Shape
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token

Token or span

sentences



Answer Search

54

■ Hand-crafted
□ Infinite answer space (e.g., summarization, machine translation): Map the predicted tokens 

as the final answers ( ) 

□ Finite answer space (e.g., text classification, sequence labeling): Map a finite set of words to 

labels (e.g., “anger”, “sadness”, “fear” to “negative”)

■ Automated Search 
□ Discrete Space

□ Continuous Space

z → y



Discrete Search Space
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■ Answer Paraphrasing
□ start with an initial answer space, 

□ then use paraphrasing to expand this answer space 

■ Prune-then-Search
□ an initial pruned answer space of several plausible answers is generated

□ an algorithm further searches over this pruned space to select a final set of answers

■ Label Decomposition
□ decompose each relation label into its constituent words and use them as an answer

■ per:city_of_death => {person, city, death}



Chain-of-Thought Prompting 
■ Instead of searching for the answer directly, and manually add some intermediate 

reasoning steps in the prompt to guide the model derive the answer 
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Tree-of-Thought
■ Instead of search the answer using a linear chain structure, prompt 

the output sequence to follow a tree structure
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Tree of Thought: Example
■ Game of 24 is a mathematical reasoning challenge, where the goal is to use 4 numbers and 

basic arithmetic operations (+-*/) to obtain 24. For example, given input “4 9 10 13”, a solution 
output could be “(10 - 4) * (13 - 9) = 24”.

58



Graph-of-Thought
■ Use a graph structure instead
■ Refining: allow self-loop over a single node
■ Aggregating: allow merging of multiple nodes
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Graph-of-Thought: Example
■ Useful for some divide-and-conquer tasks: sorting, etc.
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Design Considerations for Prompting
■ Pre-trained Model Choice
■ Prompt Template Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies
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Multi-Prompt Learning
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Single Prompt Multiple Prompts
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Single Prompt Multiple Prompts

Prompt Ensemble

Prompt Augmentation

Prompt Sharing

Prompt Composition

Prompt 
Decomposition

Multi-Prompt Learning



Prompt Ensembling
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■ Definition
□ using multiple unanswered prompts for an input at 

inference time to make predictions 

■ Advantages
□ Utilize complementary advantages 

□ Alleviate the cost of prompt engineering 

□ Stabilize performance on downstream tasks
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■ Typical Methods
□ Uniform Averaging

□ Weighted Averaging

□ Majority Voting

Prompt Ensembling



Prompt Augmentation
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■ Definition 
□ Help the model answer the prompt that is currently 

being answered by additional answered prompts   

■ Advantage 
□ make use of the small amount of information that 

has been annotated 

■ Core step 
□ Selection of answered prompts 

□ Ordering of answered prompts



Design Considerations for Prompting
■ Pre-trained Model Choice
■ Prompt Template Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies
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Prompt-based Training Strategies
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■ Data Perspective
□ How many training samples are used?

■ Parameter Perspective
□ Whether/How are parameters updated?



Prompt-based Training: Data Perspective
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□Zero-shot: without any explicit training of the LM for the downstream 
task

□Few-shot: few training samples (e.g., 1-100) of downstream tasks

□Full-data: lots of training samples (e.g., 10K) of downstream tasks



Prompt-based Training: Parameter Perspective
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Strategy LM Params 
Tuned

Additional 
Prompt Params

Prompt Params 
Tuned Examples

Promptless Fine-
Tuning Yes N/A N/A BERT Fine-tuning

Tuning-free 
Prompting No No N/A GPT-3

Fixed-LM Prompt 
Tuning No Yes Yes Prefix Tuning

Fixed-prompt LM 
Tuning Yes No N/A PET

Prompt+LM 
Fine-tuning Yes Yes Yes PADA



Too many, difficult to select?
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Promptless Fine-tuning
Fixed-prompt Tuning
Prompt+LM Fine-tuning

Tuning-free Prompting
Fixed-LM Prompt Tuning

If you have a huge pre-trained 
language model (e.g., GPT3)

If you have few training samples?

If you have lots of training samples?



Questions?


