
CS769 Advanced NLP

Prompting
Junjie Hu

Slides adapted from Pengfei, Graham
https://junjiehu.github.io/cs769-fall23/

1

https://junjiehu.github.io/cs769-fall23/

Goals for Today
• Prompting vs other machine learning paradigms in NLP
• General Workflow of Prompting
• Key Components of Prompting

1. Pre-trained Model Choice
2. Prompt Engineering
3. Answer Engineering
4. Expanding the Paradigm
5. Prompt-based Training Strategies

2

Recommended Reading

3

Four Paradigms of NLP Technical Development

4

■ Feature Engineering
■ Architecture Engineering
■ Objective Engineering
■ Prompt Engineering

Feature Engineering

5

■ Paradigm: Fully Supervised Learning (Non-neural Network)
■ Time Period: Most popular through 2015
■ Characteristics:
■ Non-neural machine learning models mainly used
■ Require manually defined feature extraction

■ Representative Work:
□ Manual features -> linear or kernelized support vector machine (SVM)

□ Manual features -> conditional random fields (CRF)

Architecture Engineering

6

■ Paradigm: Fully Supervised Learning (Neural Networks)
■ Time Period: About 2013-2018
■ Characteristics:
□Rely on neural networks

□Do not need to manually define features, but should modify the network structure (e.g.:
LSTM v.s CNN)

□Sometimes used pre-training of LMs, but often only for shallow features such as
embeddings

■ Representative Work:
□CNN/LSTM for Text Classification

□Transformer for Machine Translation

Objective Engineering

7

■ Paradigm: Pre-train, Fine-tune
■ Time Period: 2017-Now
■ Characteristics:
□Pre-trained LMs (PLMs) used as initialization of full model - both shallow and

deep features

□Less work on architecture design, but engineer objective functions

■ Typical Work:
■ BERT → Fine Tuning

Prompt Engineering

8

■ Paradigm: Pre-train, Prompt, Predict
■ Date: 2019-Now
■ Characteristic:
□NLP tasks are modeled entirely by relying on LMs

□The tasks of shallow and deep feature extraction, and prediction of the data are all

given to the LM

□Engineering of prompts is required

■ Representative Work:
□GPT3, GPT4, ChatGPT

What is Prompting？

□Encouraging a pre-trained model to make particular predictions by

providing a "prompt" specifying the task to be done.

9

What is the general workflow of Prompting?

10

■ Prompt Addition
■ Answer Prediction
■ Answer-Label Mapping

Prompt Addition
■ Prompt Addition: Given input x, we transform it into prompt x’ through

two steps:
□Define a template with two slots, one for input [x], and one for the answer [z]

□Fill in the input slot [x]

11

Example: Sentiment Classification

12

Input: x = “I love this movie”

Template: [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it
was a [z] movie.”

Answer Prediction
■ Answer Prediction: Given a prompt, predict the answer [z]
□ Fill in [z]

13

Example

14

Input: x = “I love this movie”

Template: [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it
was a fantastic movie.”

Mapping
■ Mapping: Given an answer, map it into a class label

15

Example

16

Input: x = “I love this movie”

Template: [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it
was a fantastic movie.”

Mapping: fantastic => Positive

Types of Prompts
■ Cloze Prompt: I love this movie. Overall it was a [z] movie

Example outputs:
□ I love this movie. Overall it was a boring movie
□ I love this movie. Overall it was a fantastic movie

■ Prefix Prompt: I love this movie. Overall this movie is [z]

17

Design Considerations for Prompting
■ Pre-trained Model Choice
■ Prompt Template Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies

18

■ Pre-trained Model Choice
■ Prompt Template Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies

19

Design Considerations for Prompting

■ Pre-trained Model Choice
■ Prompt Template Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies

20

Design Considerations for Prompting

Pre-trained Language Models
Popular Frameworks

■ (Left-to-Right) Autoregressive LM
■ Masked LM
■ Prefix LM
■ Encoder-decoder LM

21

(Left-to-right) Autoregressive Language Model

22

■ Characteristics:
□ First proposed by Markov (1913)

□ Count-based-> Neural network-based

□ Specifically suitable to highly larger-scale LMs

■ Example:GPT-1,GPT-2,GPT-3, GPT-4

■ Roles in Prompting Methods
□ The earliest architecture chosen for prompting

□ Usually equipped with prefix prompt and the parameters of PLMs are fixed

Masked Language Model

23

■ Characteristics:
□ Unidirectional -> bidirectional prediction

□ Suitable for NLU tasks

■ Example:
□ BERT, ERNIE

■ Roles in Prompting Methods
□ Usually combined with Cloze prompt

□ Suitable for NLU tasks, which should be reformulated into a cloze task

Prefix Language Model

24

■ Characteristics:
□ A combination of Masked & Left-to-right

□ Use a Transformer but two different mask mechanisms to

handle text X and y separately

□ Corruption operations can be introduced when encoding X

■ Examples:
□ UniLM 1,2, ERNIE-M

Encoder-Decoder LM

25

■ Characteristics:
□ A denoised auto-encoder

□ Use two Transformers and two different mask mechanisms

to handle text X and y separately

□ Corruption operations can be introduced when encoding X

■ Examples:
□ BART, T5

Encoder-Decoder Pre-training Methods
Representative Methods

■ MASS
■ BART (mBART)
■ UniLM
■ T5 (mT5, FlanT5)

26

MASS
（Song et al. 2019）

• Model: Transformer-based Encoder-decoder

• Objective: only predict masked spans

• Data: WebText

BART
(Lewis et al. 2019)

• Model: Transformer-based encoder-decoder model

• Objective: Re-construct (corrupted) original
sentences

• Data: similar to RoBERTa (160GB): BookCorpus, CC-
NEWs, WebText, Stories

Different CorruptionFramework

mBART(Liu et al. 2021)

• Model: Transformer-based Multi-lingual Denoising
auto-encoder

• Objective: Re-construct (corrupted) original
sentences

• Data: CC25 Corpus (25 langauges)

UNiLM
（Dong et al. 2019）

• Model: Prefix LM (a.k.a. Seq2seq LM), left-to-right LM, Masked LM

• Objective: three types of LMs, shared parameters

• Data: English Wikipedia and BookCorpus

T5
(Raffel et al. 2020)

• Convert all tasks to sequence-to-sequence prediction

T5
(Raffel et al. 2020)

• Model: left-to-right LM, Prefixed LM, encoder-decoder

• Objective: explore different objectives respectively

• Data: C4 (750G) + Wikipedia + RealNews + WebText

T5
(Raffel et al. 2020)

• Model: left-to-right LM, Prefix LM, encode-decoder

• Objective: explore different objectives respectively

• Data: C4 (750G) + Wikipedia + RealNews + WebText

Application of Prefix LM/Encoder-Decoders in Prompting

34

■ Conditional Text Generation
□ Translation

□ Text Summarization

■ Generation-like Tasks
□ Information Extraction

□ Question Answering

Design Considerations for Prompting
■ Pre-trained Model Choice
■ Prompt Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies

35

Traditional Formulation V.S Prompt Formulation

36

Input: x = “I love this movie”

Template: [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it
was a fantastic movie.”

Mapping (answer -> label):
fantastic => Positive

Input: x = “I love this movie”

Predicting: y = Positive

37

Input: x = “I love this movie”

Template: [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it
was a fantastic movie.”

Mapping (answer -> label):
fantastic => Positive

Input: x = “I love this movie”

Predicting: y = Positive

How to define a
suitable prompt

template?

Traditional Formulation V.S Prompt Formulation

Prompt Template Engineering

38

How to search for
appropriate prompt
templates?

How to define the
shape of a prompt
template?

Prompt Shape

39

■ Cloze Prompt
□ prompt with a slot [z] to fill in the

middle of the text as a cloze prompt,

■ Prefix Prompt
□ prompt where the input text comes

entirely before slot [z]

I love this movie. Overall it was a [z] movie

I love this movie. Overall this movie is [z]

Design of Prompt Templates

40

■ Hand-crafted
□ Configure the manual template based on the characteristics of the task

■ Automated search
□ Search in discrete space

□ Search in continuous space

Representative Methods for Prompt Search

41

■ Prompt Mining
■ Prompt Paraphrasing
■ Gradient-based Search
■ Prompt/Prefix Tuning

Prompt Mining (Jiang et al. 2019)
• Mine prompts given a set of questions/answers
• Middle-word

 Barack Obama was born in Hawaii. ! [X] was born in [Y].
• Dependency-based

 The capital of France is Paris. ! capital of [X] is [Y].

42

Prompt Paraphrasing (Jiang et al. 2019)

43

• Paraphrase an existing prompt to get other candidates
• e.g. back translation with beam search

[X] shares a border with [Y]. en-de
model

de-en
model

[X] has a common border with [Y].
[X] adjoins [Y].

……

Gradient-based Search —AutoPrompt (Shin et al. 2020)

• Automatically optimize arbitrary prompts based on existing words

44

Prefix/Prompt Tuning (Li and Liang 2021, Lester et al. 2021)

• Optimize the
embeddings of a
prompt, instead of the
words.

• "Prompt Tuning"
optimizes only the
embedding layer, "Prefix
Tuning" optimizes prefix
of all layers

45

Design Considerations for Prompting
■ Pre-trained Model Choice
■ Prompt Template Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies

46

Answer Engineering
■ Why do we need answer

engineering?
□ We have reformulated the task! We also

should re-define the “ground truth labels”

47

Traditional Formulation V.S Prompt Formulation

48

Input: x = “I love this movie”

Template: [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it
was a fantastic movie.”

Mapping (answer -> label):
fantastic => Positive

Input: x = “I love this movie”

Predicting: y = Positive

Traditional Formulation V.S Prompt Formulation

49

Positive

Negative

Label Space (Y)

Interesting
Fantastic

Happy

Boring
1-star

…

Answer Space (Z)

Answer Engineering
■ Why do we need answer

engineering?
□ We have reformulate the task! We also

should re-define the “ground truth labels”

■ Definition:
□ aims to search for an answer space and a

map to the original output Y that results in

an effective predictive model

50

Design of Prompt Answer

51

How to define the
shape of an answer?

How to search for
appropriate answers?

Answer Shape

52

■ Token: Answers can be one token in the pre-trained language
model vocabulary

■ Chunk: Answers can be chunks of words made up of more than
one tokens
□ Usually used with the Cloze prompt

■ Sentence: Answers can be a sentence of arbitrary length
□ Usually used with prefix prompt (seq2seq LM for generative tasks)

Answer Shape

53

token

Token or span

sentences

Answer Search

54

■ Hand-crafted
□ Infinite answer space (e.g., summarization, machine translation): Map the predicted tokens

as the final answers ()

□ Finite answer space (e.g., text classification, sequence labeling): Map a finite set of words to

labels (e.g., “anger”, “sadness”, “fear” to “negative”)

■ Automated Search
□ Discrete Space

□ Continuous Space

z → y

Discrete Search Space

55

■ Answer Paraphrasing
□ start with an initial answer space,

□ then use paraphrasing to expand this answer space

■ Prune-then-Search
□ an initial pruned answer space of several plausible answers is generated

□ an algorithm further searches over this pruned space to select a final set of answers

■ Label Decomposition
□ decompose each relation label into its constituent words and use them as an answer

■ per:city_of_death => {person, city, death}

Chain-of-Thought Prompting
■ Instead of searching for the answer directly, and manually add some intermediate

reasoning steps in the prompt to guide the model derive the answer

56

Tree-of-Thought
■ Instead of search the answer using a linear chain structure, prompt

the output sequence to follow a tree structure

57

Tree of Thought: Example
■ Game of 24 is a mathematical reasoning challenge, where the goal is to use 4 numbers and

basic arithmetic operations (+-*/) to obtain 24. For example, given input “4 9 10 13”, a solution
output could be “(10 - 4) * (13 - 9) = 24”.

58

Graph-of-Thought
■ Use a graph structure instead
■ Refining: allow self-loop over a single node
■ Aggregating: allow merging of multiple nodes

59

Graph-of-Thought: Example
■ Useful for some divide-and-conquer tasks: sorting, etc.

60

Design Considerations for Prompting
■ Pre-trained Model Choice
■ Prompt Template Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies

61

Multi-Prompt Learning

62

Single Prompt Multiple Prompts

63

Single Prompt Multiple Prompts

Prompt Ensemble

Prompt Augmentation

Prompt Sharing

Prompt Composition

Prompt
Decomposition

Multi-Prompt Learning

Prompt Ensembling

64

■ Definition
□ using multiple unanswered prompts for an input at

inference time to make predictions

■ Advantages
□ Utilize complementary advantages

□ Alleviate the cost of prompt engineering

□ Stabilize performance on downstream tasks

65

■ Typical Methods
□ Uniform Averaging

□ Weighted Averaging

□ Majority Voting

Prompt Ensembling

Prompt Augmentation

66

■ Definition
□ Help the model answer the prompt that is currently

being answered by additional answered prompts

■ Advantage
□ make use of the small amount of information that

has been annotated

■ Core step
□ Selection of answered prompts

□ Ordering of answered prompts

Design Considerations for Prompting
■ Pre-trained Model Choice
■ Prompt Template Engineering
■ Answer Engineering
■ Expanding the Paradigm
■ Prompt-based Training Strategies

67

Prompt-based Training Strategies

68

■ Data Perspective
□ How many training samples are used?

■ Parameter Perspective
□ Whether/How are parameters updated?

Prompt-based Training: Data Perspective

69

□Zero-shot: without any explicit training of the LM for the downstream
task

□Few-shot: few training samples (e.g., 1-100) of downstream tasks

□Full-data: lots of training samples (e.g., 10K) of downstream tasks

Prompt-based Training: Parameter Perspective

70

Strategy LM Params
Tuned

Additional
Prompt Params

Prompt Params
Tuned Examples

Promptless Fine-
Tuning Yes N/A N/A BERT Fine-tuning

Tuning-free
Prompting No No N/A GPT-3

Fixed-LM Prompt
Tuning No Yes Yes Prefix Tuning

Fixed-prompt LM
Tuning Yes No N/A PET

Prompt+LM 
Fine-tuning Yes Yes Yes PADA

Too many, difficult to select?

71

Promptless Fine-tuning
Fixed-prompt Tuning
Prompt+LM Fine-tuning

Tuning-free Prompting
Fixed-LM Prompt Tuning

If you have a huge pre-trained
language model (e.g., GPT3)

If you have few training samples?

If you have lots of training samples?

Questions?

