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Goals for Today
● What is PEFT and why do we care about it?

● Classes of PEFT methods

● Adapters & (IA)3

● Prefix-tuning & Prompt-tuning

● LoRA & Q-LoRA



Background: Open-source LMs
● Language models are becoming larger over time, so it’s computationally 

expensive to fine-tune these open-source LMs



From Fine-tuning to Parameter-efficient 
Fine-tuning

Full Fine-tuning
Update all model parameters

Parameter-efficient Fine-tuning
Update a small subset of model parameters

Slide from: EMNLP 2022 Tutorial on Modular and Parameter-Efficient Fine-Tuning for NLP Models 



Motivation: Why PEFT?

● PEFT: Fine-tune a small amount of model parameters (instead of the entire 

model) on a small dataset of downstream tasks. Other parameters are frozen.

● Benefits:
○ Reduce the computational and storage costs

○ Mitigate catastrophic forgetting — forgetting often occur when the model changes a lot after 

fine-tuning. PEFT can be regarded as a regularization on the difference between the two 

checkpoints before and after PEFT.

○ Easy to update models to new data and facts

○ Better performance in low-data regimes

○ Comparable performance to full fine-tuning 



Comparison Between PEFT and Fine-tuning

PEFT Full Fine-tuning

Learnable parameters A small subset Entire model

Training Performance Close to fine-tuning Closed to fine-tuning

Training Data Small Large

Training Time Faster Longer training time

Overfitting / forgetting Less prone to overfitting More prone to overfitting



Three Computation Functions

Parameter CompositionInput CompositionFunction Composition

Slide from: EMNLP 2022 Tutorial on Modular and Parameter-Efficient Fine-Tuning for NLP Models 



Three Computation Functions
Let a neural network                       be decomposed into a composition of functions: 

                                   Each has parameters                          

A module with parameters     can modify the i-th subfunction as follows:

1. Function composition: 

2. Input composition:                                                 

3. Parameter composition:                                           

In practice, typically only the module parameters      are updated while     is fixed.   

Interpolation, e.g., element-wise addition

Concatenation

Function composition

Slide from: EMNLP 2022 Tutorial on Modular and Parameter-Efficient Fine-Tuning for NLP Models 



Three Computation Functions

Function Composition Input Composition Parameter Composition

Example Methods Adapters, (IA)3 Prompt Tuning, Prefix 
Tuning LoRA, QLoRA, Pruning

Impact on Model Size Additional modules in 
layers

Context window of 
model is increased

No increase in model 
size

Performance Matches or outperforms 
fine-tuning Good with large models Good



Function Composition:
Adapters, (IA)3



Adapter

● An adapter is a MLP 

network.

● Add an adapter after the 

feed-forward layer in each 

Transformer layer

Houlsby et al ICML 2019. Parameter-Efficient Transfer Learning for NLP. https://arxiv.org/pdf/1902.00751.pdf



Why does this work? One Possible Intuition

● Oversimplified setting: Each 

layer is a matrix which 

transforms the input to a 

new space

● Adapters help “reroute” the 

data embeddings to what 

the upper layer expects

First Layer First Layer

Adapter

Second Layer Second Layer

Original Data New Data New Data



Why does this work? One Possible Intuition

● In practice, Adapters 

change the embeddings 

less than fine-tuning

He et al. ACL 2021. On the Effectiveness of Adapter-based Tuning for Pretrained Language Model Adaptation. https://arxiv.org/abs/2106.03164



Adapters v.s. Full Fine-tuning

He et al. ACL 2021. On the Effectiveness of Adapter-based Tuning for Pretrained Language Model Adaptation. https://arxiv.org/abs/2106.03164
Houlsby et al ICML 2019. Parameter-Efficient Transfer Learning for NLP. https://arxiv.org/pdf/1902.00751.pdf

Adapters > FT with less data Adapters > FT with less params

https://arxiv.org/abs/2106.03164


Adapters v.s. Full Fine-tuning

He et al. ACL 2021. On the Effectiveness of Adapter-based Tuning for Pretrained Language Model Adaptation. https://arxiv.org/abs/2106.03164

Adapters are less sensitive to hyperparameters like learning rate

https://arxiv.org/abs/2106.03164


(IA)3

● Instead of learning a function, even 

rescaling via element-wise 

multiplication can be powerful:

● Allows the model to select 

parameters that are more and less 

important for a given task

Liu et al NeurIPS 2022. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. 
https://arxiv.org/abs/2205.05638



Input Composition:
Prompt-tuning, Prefix-tuning



Motivation

● Prompting with text: Prepending instructive words or demonstrations before 

the actual test input

● Standard prompting can be seen as finding a discrete text prompt 

that—when embedded using the model’s embedding layer—yields 

● However, models are sensitive to the formulation of the prompt and to the 

order of examples

● Why not skip the words and directly learn an appropriate     ? 



Prompt Tuning

● Prompt tuning only updates a small 

task-specific prompt parameters for each 

task, enables mixed task inference.

● Fine-tuning (Model tuning): make a 

task-specific copy of the entire 

pre-trained LMs for each task, and 

inference must be performed in separate 

batches.

Lester et al. EMNLP 2021. The Power of Scale for Parameter-Efficient Prompt Tuning. https://arxiv.org/abs/2104.08691



Prompt Tuning vs Model Tuning

● As model size increases (e.g., T5-XXL 

11B model), prompt tuning of T5 

(green curve) matches the 

performance of (full) model tuning 

(red/orange curves) on SuperGLUE.

● Prompt design: few-shot in-context 

prediction by GPT-3 (blue curve) is 

still way worse than fine-tuning.



Prefix Tuning / Multi-Layer Prompt Tuning

● Add learnable parameters at the 

beginning of the input sequence 

over all Transformer layers.

● Use different prefix parameters 

for different tasks, and keep the 

other parameters frozen

Li et al. ACL 2021. Prefix-Tuning: Optimizing Continuous Prompts for Generation. https://arxiv.org/pdf/2101.00190.pdf



 Effective on NLG tasks w/ 0.1% parameters

● Evaluate on three table-to-text generation datasets: E2E, WebNLG, and DART

● Continuous prompts in later layers are more important



Low-Data Setting

● Perform comparative to fine-tuning in low-data regimes 



Parameter Composition:
LoRA and Q-LoRA



LoRA
● Approximate the self-attention update of a 

learnable weight by a low-rank matrix

● The initial update is 0

● After training, the updates are added back to 

the original checkpoint. So, the inference cost 

of the updated checkpoint is the same as the 

original checkpoint.

Hu et al. ICLR 2021. LoRA: Low-Rank Adaptation of Large Language Models. https://arxiv.org/pdf/2106.09685.pdf



LoRA works better than other PEFT

● GPT-2 Median (355M) and Large (774M) models



Why does this work? Intrinsic Dimensions
● Models can be optimized in a low-dimensional, randomly oriented subspace rather 

than the full parameter space

Standard fine-tuning: Low-rank fine-tuning: 

● Intrinsic Dimensionality: Smallest d for which models achieve 90% of original accuracy

○ Intrinsic dimensionality decreases during pre-training

○ Larger models have lower intrinsic dimensionality

Li et al. ICLR 2018. Measuring the Intrinsic Dimension of Objective Landscapes. https://arxiv.org/abs/1804.08838 
Aghajanyan et al. ACL 2021. Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. https://arxiv.org/abs/2012.13255

https://arxiv.org/abs/2012.13255


One Possible Intuition
● Pre-training provides a strong initialization, i.e. a good          in D dimensional 

space

● Due to this, the model only needs to explore a subspace of d dimensions during 

fine-tuning (through        ), to learn the final weights 

Li et al. ICLR 2018. Measuring the Intrinsic Dimension of Objective Landscapes. https://arxiv.org/abs/1804.08838 
Aghajanyan et al. ACL 2021. Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. https://arxiv.org/abs/2012.13255

https://arxiv.org/abs/2012.13255


Scale to GPT-3 175 B 
● Key benefit is the reduction in memory and storage usage:

○ Do not need to store the gradients of the frozen parameters

○ Reduce the VRAM consumption from 1.2TB to 350GB during training

○ Use fewer GPUs and fewer I/O operations

● But LoRA still requires forward computation and back-propagation.
○ So, LoRA gives a 25% speedup (not 10x) compared to full fine-tuning. 



QLoRA: Further Reduce Memory Usage
● Convert information in a high-precision data type to a low-precision data type

● Allows training a LLM in a single consumer GPU, e.g., 33B LLAMA in a single 24GB GPU 

Image source: https://huggingface.co/blog/4bit-transformers-bitsandbytes



QLoRA
● Define a quantization method to convert a 16-bit model into a 4-bit model, using CPU before training

● Store the model weights in a special data type (4-bit NF), and compute the update using another data 

type (16-bit BF)



QLoRA: Background
● Block-wise k-bit Quantization: discretize an input from a high-precision representation to a 

low-precision representation. 
○ Example: quantize a 32-bit float tensor into a 8-bit integer tensor with range [-127, 127] with a quantization 

constant c (input dependent). 

○ Dequantization is the inverse operation:



QLoRA: Double Quantization
● Double Quantization: (1) first quantize the weight matrix, and (2) then further 

quantize the quantization constants for additional memory savings.
○ Example: using 32-bit constants and a blocksize of 64 for a weight W, quantization constants 

add 32/64 = 0.5 bits per parameter on average

Second dequantization 

First dequantization 



QLoRA
● QLoRA use a single linear layer in the quantized based model with a single LoRA 

adapter (recall LoRA update:                              )

● Summary: QLoRA has one storage data type (usually 4-bit NormalFloat) and 

a computation data type (16-bit BrainFloat). They dequantize the storage 

data type to the computation data type to perform the forward and backward 

pass, but they only compute the weight gradients for the LoRA parameters 

which use 16-bit BrainFloat.



Fine-tuning a LLM in a single GPU
● Fine-tune a 65B LLM on a 48GB GPU (e.g., A6000)

● Fine-tune a 33B LLM on a 24GB GPU (e.g., RTX 3090, RTX 4090, A5000)



4-bit NF vs 4-bit Floating Point

● Using the same amount of model 

bits, 4-bit NF yields better 

performance than 4-bit Floating 

point (orange vs blue curves).

● Double quantization reduces the 

memory footprint without degrading 

performance (orange vs green 

curves). For instance, save ~3GB 

GPU RAM for a 65B LLM

Mean zero-shot accuracy on 5 datasets using LLAMA w/ 
different 4-bit data type.



Summary:
How do these 

methods 
compare?

Liu et al NeurIPS 2022. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. 
https://arxiv.org/abs/2205.05638



Aside: Extending PEFT to 
Compositionality



Extending PEFT to Compositionality
● Can we leverage the modular nature of PEFT methods as a means to model 

compositionality?

● Learning smaller and task specific modules allows us to compose them in 

different ways as a “mixture of experts”

● Combining known experts facilitates multi-task models and out of distribution 

generalization!



DEMIX Layers

Gururangan et al. NAACL 2022. DEMix Layers: Disentangling Domains for Modular Language Modeling. https://arxiv.org/abs/2108.05036



References
● https://www.leewayhertz.com/parameter-efficient-fine-tuning/ 

● https://huggingface.co/blog/peft 

● Ruder, S., Pfeiffer, J., & Vulić, I. (2022, December). Modular and Parameter-Efficient Fine-Tuning for NLP Models. In Proceedings 

of the 2022 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts (pp. 23-29).

● Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., ... & Gelly, S. (2019, May). 

Parameter-efficient transfer learning for NLP. In International Conference on Machine Learning (pp. 2790-2799). PMLR.

● He, R., Liu, L., Ye, H., Tan, Q., Ding, B., Cheng, L., ... & Si, L. (2021, August). On the Effectiveness of Adapter-based Tuning for 

Pretrained Language Model Adaptation. In Proceedings of the 59th Annual Meeting of the Association for Computational 

Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 

2208-2222).

● Lester, B., Al-Rfou, R., & Constant, N. (2021, November). The Power of Scale for Parameter-Efficient Prompt Tuning. In 

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 3045-3059).

● Li, X. L., & Liang, P. (2021, August). Prefix-Tuning: Optimizing Continuous Prompts for Generation. In Proceedings of the 59th 

Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural 

Language Processing (Volume 1: Long Papers) (pp. 4582-4597).

https://www.leewayhertz.com/parameter-efficient-fine-tuning/
https://huggingface.co/blog/peft


References
● Liu, H., Tam, D., Muqeeth, M., Mohta, J., Huang, T., Bansal, M., & Raffel, C. A. (2022). Few-shot parameter-efficient fine-tuning 

is better and cheaper than in-context learning. Advances in Neural Information Processing Systems, 35, 1950-1965.

● Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. (2021, October). LoRA: Low-Rank Adaptation of Large 

Language Models. In International Conference on Learning Representations.

● Li, C., Farkhoor, H., Liu, R., & Yosinski, J. (2018, February). Measuring the Intrinsic Dimension of Objective Landscapes. In 

International Conference on Learning Representations.

● Aghajanyan, A., Gupta, S., & Zettlemoyer, L. (2021, August). Intrinsic Dimensionality Explains the Effectiveness of Language 

Model Fine-Tuning. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th 

International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 7319-7328).

● Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2023). Qlora: Efficient finetuning of quantized llms. arXiv preprint 

arXiv:2305.14314.

● Gururangan, S., Lewis, M., Holtzman, A., Smith, N. A., & Zettlemoyer, L. (2022, July). DEMix Layers: Disentangling Domains for 

Modular Language Modeling. In Proceedings of the 2022 Conference of the North American Chapter of the Association for 

Computational Linguistics: Human Language Technologies (pp. 5557-5576).


