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Goals for Today

 Subword Tokenization: BPE
* (Generative) Sequence Labeling: Hidden Markov Model

* (Discriminative) Seqguence Labeling: Conditional Random
Field



|_evels of Linguistic Knowledge

The study of the sounds of human

Phonetics ||, uaq¢
The study of sound systems in
Phonology human language

The study of the formation and
internal structure of words

The study of the formation and
internal structure of sentences

Pragmatics

The study of the meaning of
sentences

The study of the way sentences with
their semantic meanings are used
for particular communicative goals

speech

phonetics

orthography

phonology

"shallower"

"deeper”

morphology

lexemes

syntax

semantics

pragmatics

discourse




Morphology
& Word Tokenization



lokenization (Example

Input raw text

Dr. Smith said tokenization of English i1s “harder than you’ve thought.”
When in New York, he paid $12.00 a day for lunch and wondered what it would
be like to work for AT&T or Google, Inc.

Output from Stanford Parser with Part-of-Speech tags: http://
nlp.stanford.edu:8080/parser/index.jsp

Dr./NNP Smith/NNP said/VBD tokenization/NN of/IN English/NNP
is/VBZ "~/ harder/JJR than/IN you/PRP 've/VBP thought/VBN ./.
"/”

When/WRB in/IN New/NNP York/NNP ,/, he/PRP paid/VBD $/$ 12.00/CD
a/DT day/NN for/IN lunch/NN and/CC wondered/VBD what/WP it/PRP
would/MD be/VB like/JJ to/TO work/VB for/IN AT&T/NNP or/CC
Google/NNP ,/, Inc./NNP ./.


http://nlp.stanford.edu:8080/parser/index.jsp
http://nlp.stanford.edu:8080/parser/index.jsp

Subword Tokenization

* Neural systems typically use a relatively small fixed vocabulary

* Real world contains many words

e New words all the time

* For morphologically rich languages, even more so

* But most words are rare (Zipf's Law)
* Note that rare words do not have good corpus statistics

* S0, tokenize words into more frequent subword segments



Unsupervised Subword Algorithms

e Use the data to tell us how to tokenize

* Three common algorithms:
* Byte-Pair Encoding (BPE) [Sennrich et al., 2016]
 WordPiece [Schuster and Nakajima, 2012]

* Unigram language modeling tokenization (Unigram) [Kudo,
2018]

* |Learnable tokenizer:
* Training: takes a raw training corpus and induces a vocabulary

* Segmentation: tokenizes a raw test sentence according to the
iInduced vocabulary

BPE: https://github.com/rsennrich/subword-nmt

SentencePiece: https://github.com/google/sentencepiece



https://github.com/rsennrich/subword-nmt
https://github.com/google/sentencepiece

Byte-Pair Encoding

 Add a special end-of-word symbol “__" (U+2581) or </w> at
the end of each word Iin training corpus

 (Convert words into a set of characters, create an initial
vocabulary

* [teratively merge the most frequent pair of adjacent tokens for
K times

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V<—all unique characters in C # initial set of tokens is characters
fori=1tok do # merge tokens til k£ times
1L, tr < Most frequent pair of adjacent tokens in C
tvew <11 + IR # make new token by concatenating
Ve V+ tyew # update the vocabulary
Replace each occurrence of #7, tg in C with tyzy # and update the corpus

return V




Byte-Pair Encoding (Example)

Example — training corpus:
low low low low low lowest l[owest newer newer newer newer newer newer
wider wider wider new new

low__ low__ low__ low__ low__ lowest__ lowest__ newer_ newer__ newer__
newer__ newer__ newer__ wider__ wider__ wider_ new__ new__

v

corpus vocabulary

5 l ow _ _,d, e, i, 1, n, o, r, s, t, W
2 lowest_

6 newer _

3 wider _

2 new



Byte-Pair Encoding (Example)

corpus vocabulary

5 l ow _ _, d, e, 1, 1, n, o, r, s, t, w
2 lowest _

6 newer _

3 wider _

2 new_

Merge erto er

COrpus vocabulary

5 l ow _ ., d, e, 1, 1, n, o, r, s, t, w, er
2 lowest _

6 newer _

3 wider _

2 new_



Byte-Pair Encoding (Example)

corpus vocabulary

5 low _ ., d, e, 1, 1, n, o, r, s, t, w, er
2 l owest_

6 newer _

3 wilder _

2 new_

Mergeer toer

corpus vocabulary

5 l ow _ _,d,e,i,1,n,0, 1, s, t,w, er, er__
2 lowest _

6 newer_

3 wider_

2 new_
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Byte-Pair Encoding (Example)

corpus vocabulary

5 l ow _ _,d,e,i,1,n,0,r, s, t,w, er, er_
2 lowest_

6 newer_

3 wilder_

2 new_

Merge n e tone

corpus vocabulary

5 l ow _ _,d,e,i,1,n,0, 1, s, t,w, er, er_, ne
2 l owest _

6 ne w er_

3 wilder_

2 ne w _



Byte-Pair Encoding (Example)

* The next merges are:

Merge Current Vocabulary

(ne, w) _,d,e,1,1,n,0, 1, s, t,w, er, er_, ne, new

(1, o) _,d,e,1,1,n,0,1,s,t,w, er, er__, ne, new, lo

(lo, w) _,d,e,1,1,n,0, 1, s, t,w, er, er_, ne, new, lo, low

(new, er_) _,d,e,1,1,n,0, 1, s, t,w, er, er_, ne, new, lo, low, newer__

(low, _) _,d,e,1,1,n,0,1,s, t,w, er, er__, ne, new, lo, low, newer__, low_

+: Usually include frequent words,
and frequent subwords which are often morphemes, e.g., -est or -er

13



Syntax
& Seqguence Labeling



Seqguence labeling problems

Map a sequence of words to a sequence of labels
* Part-of-speech tagging (Church, 1988; Brants, 2000)
 Named entity recognition (Bikel et al., 1990)

* Jext chunking and shallow parsing (Ramshaw and Marcus,
1995)

 Word alignment of parallel text (Vogel et al., 1996)

 Compression (Conroy and O’Leary, 2001)

* Acoustic models, discourse segmentation, etc.

15



Part of Speech Tagging

* Penn treebank tagset (Marcus et al., 1993)

Tag  Description Example Tag Description Example Tag Description Example

CC coordinating and, but, or PDT predeterminer all, both  VBP verb non-3sg eat
conjunction present

CD  cardinal number one, two POS possessiveending s VBZ verb 3sg pres  eats

DT determiner a, the PRP personal pronoun [, vou, he WDT wh-determ.  which, that

EX existential ‘there’ there PRPS possess. pronoun vour, one’s WP wh-pronoun  what, who

FW  foreign word mea culpa RB  adverb quickly WPS wh-possess.  whose

IN preposition/ of, in, by RBR comparative faster WRB wh-adverb how, where
subordin-con adverb

1) adjective vellow RBS superatv. adverb fastest S dollar sign $

JIR comparative adj  bigger RP  parucle up, off E pound sign #

JIS superlative adj wildest SYM symbol +.%, & = left quote S

LS listitemmarker [/, 2, 0ne TO “w" 1o right quote or”

MD  modal can, should UH interjection ah, oops  ( left paren LGH <

NN sing or mass noun [llama VB  verbbase form  ear ) right paren EA 'S

NNS  noun, plural llamas VBD verb past tense ate comma

NNP  proper noun, sing. IBM VBG verb gerund eating sent-endpunc . ! ?

NNPS proper noun, plu. Carolinas VBN verb past pant. eaten sent-mid punc : ;... —-

16



POS tagging (Example)

e System outputs:

* The/DT grand/JJ jury/NN commented/VBD on/IN a/DT
number/NN of/IN other/JJ topics/NNS /.

e There/EX are/VBP 70/CD children/NNS there/RB

* Preliminary/JJ findings/NNS were/VBD reported/VBN in/IN
today/NN ’s/POS New/NNP England/NNP Journal/NNP of/
IN Medicine/NNP ./.

17



Universal Dependencies for All Languages

‘ . .
U Universal Dependencies

Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological features, and syntactic
dependencies) across different human languages. UD is an open community effort with over 300 contributors producing more than 150 treebanks in
90 languages. If you're new to UD, you should start by reading the first part of the Short Introduction and then browsing the annotation guidelines.

Short introduction to UD
UD annotation guidelines
More information on UD:
o How to contribute to UD
o Tools for working with UD
o Discussion on UD
o UD-related events
Query UD treebanks online:
o SETS treebank search maintained by the University of Turku
o PML Tree Query maintained by the Charles University in Prague
o Kontext maintained by the Charles University in Prague
o Grew-match maintained by Inria in Nancy
o INESS maintained by the University of Bergen

Download UD treebanks

Open class words
D

> |>
o
-

—
—
-]
(1

=
o
i
—

PROPN
VERB

Closed class words

ADP
AUX

Other
PUNCT

SYM
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Sequence labeling as text classification

. Generative Model: Learn joint probability P(X, Y")
* Hidden Markov Models

A

Y =arg max P(x1- - Tn,Y1° Yn)

yloooyn
Vy;, € C

. Discriminative Model: Learn conditional probability P(Y | X)

e (Conditional Random Fields

e Neural network-based methods

A

Y =arg max P(Y|X) 1 ¥

e Both trained via Maximum Likelihood Estimation

19



Hidden Markov Model

(Sequential Version of Naive Bayes)

20



Classic Solution: HMMs

 \We want a model of unobservable (hidden) sequences y and observations x

D00
\\STOPU
0) ()

(1., Y1---Ynt1) = q(STOP|yn) | [ a(wilyi—1)e(@:ly:)
1=1

=

'STARTY

where Yo = START and we call q(y'|y) the transition distribution and e(x|y) the emission (or
observation) distribution.

Assumptions:
e Tag/state sequence is generated by a Markov model
« Words are chosen independently, conditioned only on the tag/state

* These are totally broken assumptions: why?
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Tag predictions depends on context

e Time flies like an arrow

 Fruit flies like a banana
S

/

NP
'

NV
) \ \ \ \

Trme £ les Lke an accow.
Foud fles \\lea O\ _‘COKV\tw\C-.

i
?!‘ :\l / c‘?.'!' /N -'7‘0
-/ \
NP \ P NY

22



HMM Learning and Inference

* Learning by maximum likelihood estimation: transition
q(y'|y) and emissions e(z|y)

n

(1. Tn, Y1 Ynt1) = q(5TOPlyn) | | a(wilyi—1)e(@ily:)
1=1

* Inference (linear time in sentence length!)

o Viterbi:

y*x = argmax p(x1...Tn, Y1---Yni1)

Y1oeYn where y,11 = STOP

e Forward Backward:

p(xy ..z, gi) = Y Y plE@1...Tn,y1..Yn)

Yi---Yi—1 Yi+1---Yn

23



| earning: Maximum Likelihood

* Supervised Learning

* Assume m fully labeled training examples:

(@ yD)i=1--m}

where () =z, ...z, and y? = y; - - -y,

e \What's the maximum likelihood estimate”?

p(Z1.. T, Y1..-Ynt+1) = q(STOP|yy) H yzlyz De(wily:)

qM L yz\yz 1 GML(fEi!yi)

24



| earning: Maximum Likelihood

MLE: counting the co-occurrence of the event

c(y, )

c(yi_layi) GML(:E‘y) - C(y)

c(Yi—1)

QML(yz"yi—l) —

Will these estimates be high quality?
 Which is likely to be more sparse, g or &7

« The emission function, because c(y, x) is more likely to have
sparse values.

Can use all the same smoothing tricks we used for counting-
based language models!

Other approaches: Map low-frequency words to a small, finite
set of units (e.q., prefixes, word classes), and run MLE on new
sequences

25



Inference (Decoding)

Problem: find the most likely (Viterbi) sequence under the model
y*x = argmax p(ri...Tp, Y1---Ynil)
Y1...Yn
Given model parameters, we can score any sequence pair
NNP VBZ NN NNS CD NN

Fed raises Interest rates 0.5 percent

In principle, we can list all possible tag sequences, score each
one, and pick the best one (a.k.a. the Viterbi state sequence)

NNP VBZ NN NNS CD NN = logP =-23
NNP NNS NN NNS CD NN => logP =-29
NNP VBZ VB NNS CD NN => IlogP =-27

20



The State Lattice/Trellis: Viterbi

g@xﬁdm) ® ® ® ®

71 P/@ (raises|V) g(interest|V) e(STOPI|V)

@ q(VIV) @

Yoone(rates|J) 4\5\

©@ © O O
® ® ® ©

START Fed raises interest rates STOP

- Brute force approach: enumerate n* possible tag sequences

27



Dynamic Programming!
 Focus on max, consider special case of n=2

» Define m(4,y;) to be the max score of a sequence of length 4
ending in tag y;

max q(STOP|y2)q(yz2|y1)e(z2|y2)q(y1 | START )e(z1|y1)

Y1.,Yy2

= max q(STOP|yz)e(x2|y2) max q(y1|START)q(y2|y1)e(w1|y1)

— n;ax q(STOP|ys)e(xa|y2)m(2,y2)

given that m(2,y2) = IQ/?X q(y1|START )q(y2|y1)e(z1|y1)

 What about the general case”? (Consider n=3, etc...)

28



Dynamic Programming!
General case

Define (¢, y;) to be the max score of a sequence of length ¢
ending in tag vy;

w(i,y;) = max p(Ti...T;,Y1...Y;)

Yyi...Yi—1
= max e(Z;|y:)q(Yi|Yi—1) ylel.gxdp(a:l T, Y1 Yie1)
Yi—1 ¢
— r;;‘c_lice(:ci vi)q(Yilyi-1) w(i—1,y;_1)

We now have an efficient algorithm. Start with =0 and work your
way to the end of the sentence!

29



START

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Fruit

m(1,N)

m(1,V)

(1, IN)

Viterbi (Example)

Yi—1

Flies

m(2,N)

Like

(3,N)

Bananas

w(2,V)

m(4,N)

m(3,V)

(2, IN)

w(4,V)

m(3,IN)

STOP

(4, IN)
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START

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Fruit

m(1,N)

=0.03

m(1,V)

=0.01

m(1,IN)

=0

Viterbi (Example)

Yi—1

Flies

m(2,N)

Like

m(3,N)

Bananas

m(2,V)

(4,N)

m(3,V)

m(2,IN)

m(4,V)

m(3,IN)

STOP

m(4,IN)
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Fruit

m(1,N)

Viterbi (Example)

Flies

Like

=0.03

m(1,V)

START

=0.01

m(1,IN)

=0

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Yi—1

m(2,N)

m(3,N)

=0.005

w(2,V)

m(3,V)

m(2,IN)

m(3,IN)

Bananas

m(4,N)

w(4,V)

(4, IN)

STOP
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Fruit

(1,N)

=0.03

m(1,V)

START

=0.01

m(1,IN)

=0

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Viterbi (Example)

Yi—1

Flies

m(2,N)

Like

m(3,N)

=0.005

w(2,V)

=0.007

m(3,V)

m(2,IN)

m(3,IN)

=0

Bananas

(4,N)

m(4,V)

(4, IN)

STOP
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Fruit

m(1,N)

Viterbi (Example)

Flies

=0.03

m(1,V)

START

=0.01

m(1,IN)

=0

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Yi—1

m(2,N)

Like

(3,N)

=0.005

m(2,V)

=0.0001

m(3,V)

=0.007

m(2,IN)

=0.0007

m(3,IN)

=0

=0.0003

Bananas

(4,N)

w(4,V)

(4, IN)

STOP
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Viterbi (Example)

Fruit

m(1,N)
=0.03

n(1,V)
=0.01

START

(1,IN)
=0

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Yi—1

Flies Like Bananas
m(2,N) m(3,N) | m(4,N)
=0.005 =0.0001 =0.00003
w(2,V) m(3,V) w(4,V)
=0.007 =0.0007 =0.00001

m(2,IN) m(3,IN) (4,IN)
=0 =0.0003 =0

STOP
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Fruit

m(1,N)

Viterbi (Example)

Flies

=0.03

m(1,V)

START

=0.01

(1, IN)

=0

m(t,y;) = maxe(z;|yi)q(yi|lyi—1)m(¢ — 1, yi—1)

Yi—1

m(2,N)

Like

=0.005

m(3,N)

m(2,V)

=0.0001

=0.007

m(3,V)

(2, IN)

=0.0007

=0

m(3,IN)

=0.0003

Bananas

m(4,N)
=0.00003

m(4,V)
=(0.00001

(4, IN)
=0

STOP
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Viterbi (Example)

Fruit Flies Like Bananas
m(1,N) m(2,N) m(3,N) m(4,N)
=0.03 =0.005 =0.0001 =0.00003
'n_c o
< (1, V) (2,V) (3,V) (4,V) O
7 =0.01 =0.007 =0.0007 =0.00001 \
m(1,IN) (2,IN) m(3,IN) m(4,IN)
=0 =0 =0.0003 =0

bp(¢, yi) = arg max e(x;|vy:)q(yi|yi—1)m(¢ — 1, yi—1)

Yi—1

Why is this not a greedy algorithm” Why does this find max P(.)?

37



Viterbi Algorithm

* Dynamic programming (for all z)

(i, y;) = ylr.I.l.;C}X_1p($l XYL Yi)

* [terative computation

| 0 otherwise

ﬂ-(Oa yO) = <

Fori=1...n:

(4, yi) = max e(z;|y:)q(Yilyi—1)7(t — 1, yi—1)

Yi—1

* Store back pointers:

bp(t,y;) = arg max e(x;|y;)q(yi|yi—1)m (¢ — 1, yi—1)

Yi—1

« What is the final solution? bp(n + 1, STOP)

38



Viterbi Algorithm: Time complexity

* Linear in sentence length n

* Polynomial in the number of possible tags K

(4, ys) = max e(@;|y:)q(yi|yi—1)m(e — 1,4i-1)

Yi—1

iterate over all possible tags

* Specifically:

O(n|K|) entries in 7 (%, y;)

O(|K]|) time to compute each 7 (i, y;)

e Jotal runtime:

O(n|KJ?)

39



Conditional Random Fields

(Sequential Version of Logistic Regression)

40



Recap: Logistic Regression
(Log Linear Models)
. Text classification: X = {z1--- ,z,},y € {1---C}

v F(X,y=c) Scoring function

exp(w, f(X) +b)
Ply=c|X)= —— (wTF(X) £ bo)

— Xpexp(wf f(X) +bi)’

~;

We, f(X) € R

(X) Normalization constant
or partition function

“Log-linear” assumption:
» The features of the input is “log-linear” to the output

logPly=c|X)=F(y=c,X)—log Z(X)

* Very flexible to include hand-crafted features (or learned
features by neural networks)

41



Linear chain Conditional Random Fields
(“Log-Linear” 1st order Sequential Model)

n+1
P(Y|X) = g(lX) exp (Z/\ q(yi-1, i X +Zu 9(yi, X )

. Sequence labeling X = {z; - - xn} Y = {y1 yn,STOP}

=2

" d1 features d features scoring each
scoring transitions  state w/ input sequence

FY,X) = w- £(Y,X) = Zw Wi, gir1, X), w, f(Y,X) € RY

f(yiayi—l—laX) — [Q(yiayz’-I-laX); g(yi,X)]
w=[\ ul,A € R, pueR®

ICML “test-of-time” paper: Lafferty et al. 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data 42



CRF: Learning

* Learning: maximize the log-likelihood over the training data

L(w) = Z log P(Y | X)

(XaY)NDtrain

= Y w (Y, X)—logZ(X)]

(XaY>NDtrain \
w”® = arg max L(w) Sum over all possible outputs Y
w for an input X — Brute force

solution: score N¢ outputs
Can we do faster?

* Update: stochastic gradient descent to move in a direction
that decreases the loss

0L (w)
ow

w<—w—o
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Dynamic Programing
* Learning: maximize the log-likelihood over the training data

dlog Z(X) . <&, ,
O, = by ;fj(yz’ayi—l—laX)

n
= "By [P YA X)W Yy, X))
=1

=" N Py X) i (% Y, X)

v=1y5,0i 14

P(yé, yz/'+1 |X) can be computed by dynamic programing
(forward-backward algorithm) — sum production algorithm,

basically replace the max operation in Viterbi algorithm by sum
operation

44



CRF Decoding: Viterbl

 Same as HMM decoding

* Viterbi (max-production algorithm): define the recursive
function to compute the max value of the past partial sequence

Y™ = argmaxlog P(Y|X)
Y Decoding output
= arg m}gxw : f(Y, X) — log Z(X) doesn’t depend on the

second term

n
= argmya,xz;w - f(Yi» Yiy1, X)
1=

45



Feature functions

* Feature functions based on possible combination of words
and tags, or other information such as POS tag (it given),
whether the word Is capitalized or not

0 otherwise

Q1(yz’—17yz'7X) — {

1 if y; = PERSON and z; = John

0 otherwise

92(yi, X) = {

Feature values are not limited to just binary values, can be real-values too.
Number of features can be tens of thousands or more.
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Neural Conditional
Random Fields



Neural CRF

 Rather than hand-crafted features, let's use NN to learn
features.

CRF Layer f

-

~

Bi-LSTM 4
encoder

Word y
embeddings

Lample et. al 2016 Neural Architectures for Named Entity Recognition 48



| earned Feature

. Fiy::the output of the bi-LSTM model followed by a linear
orojection layer. P € R™*¢

. A € RET2XC*+2 iq the transition matrix from one state (tag)

to the other state, including the start/end states (so C+2).

n n
s(X,y) = Z A‘y-z'a'yi—i-l T Z P-z'.,y,-_
i=0 =1

Scoring the transition  Scoring the association
Of tag yi w/ the input X

49



BILSTM-CNN CRF

* Use CNN to encode character embeddings

Char T
Embedding [

Convolution

Max Pooling

Char
Representation

Ma et al. 2016. End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF
50



BILSTM-CNN CRF
CRF
Layer

\
! \
! \
! \
| \
| \

e Use CNN to encode
character embeddings

Backward

e Combine char and word
embeddings together

* Further encode by BILSTM
model to learn the o
seguence representations  Representation

 Add a CRF layer

Word
Embedding

We are playing soccer

Ma et al. 2016. End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF -



BERT-CRF

 Replace BILSTM with a BERT encoder

NER Labels 0 o) (o o) (o) (wc) (o
| R e D
C CRF Layer

R A I N I I
C BILSTM / BERT
R L R

Word
Embeddings

Hello , me name is Dani |



Comparison: Naive Bayes -> HMM
L ogistic Regression -> CRF
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Recap Nalve Bayes & HVMs

Naive Bayes (for text classification):

P(X,y) = P(X|y)P (HP a:zly)

 Hidden Markov Models (for sequence labeling):

P(X,Y) = q(STOP|y,) H q(yilyi—1)e(zi|y:)

= (q(STOPIyn)H (Y3 | yi— ) ( e leyz)
1=1 1=1

Y) (H P($i|yz')>

HMMs & sequence version of Naive Bayes!
Both are generative models.

’:]:
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|_ogistic Regression & CRF

Logistic Regression (for text classification):

PlY =c|X) xw. - F(X,Y = c¢)

Conditional Random Field (for sequence labeling):

P(Y|X) = HP i1 X:,Yio1), Yy =[START]

P(Y; =c|X;, Y1) ocwe - f(Yi = ¢, Yi1,X;)

:)‘Q(lfz :Caif’i—l)X’i)_l_:u“'g(l/’i

CRF & sequence version of Logistic Regression!
Both are discriminative models.

— C, Xz)

55



GGenerative v.s. Discriminative

* Generative Models:
. Joint probability: P(X,Y)
. Make prediction by arg maxy P(X,Y)
. Can generate new samples (X, Y")

« Examples: HMMs, Naive Bayes

* Discriminative Models:
. Conditional probability: P(Y | X))
. Can directly predictarg maxy P(Y | X)

 Examples: Conditional Random Fields, Logistic Regression

e Both trained via Maximum Likelihood Estimation
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Compare Naive Bayes and Logistic Regression

* Directed graphical model vs undirected graphical model

Y ~ P(Y) P(Y =cX) xw. - F(X,Y =)
Y Y
;(.i_l ;(.i Xis1 Xi 1 X, Xit1
Naive Bayes Logistic Regression
(Generative) (Discriminative)

An open circle indicates that the variable is not generated by the model.



Compare HMM and linear chain CRF

* Directed graphical model vs undirected graphical model

P(Y; — C|X’i7}/i—1) X We - f(YL = C, }/:i—laXi)

q(Yi|Yi—1) =X qYVi=c¢Y1,X) +p- g(Yi =, X;)
Y 1 Y, Y,j_H Y Y; Yi—l—l
F S R
) ° ° O O O
X 4 X, X, 11 Xi-1 X Xit1
HMM Chain-structure CRF
(Generative) (Discriminative)

An open circle indicates that the variable is not generated by the model.
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Variants of CRF Layers

Yi1 Y; Yip
1 l 1 * 1th order linear chain
X—l Xz X+1
ﬂ?ﬁi\ﬁﬂ e 2nd order linear chain
(o) o) o)
Yi1 Y; Yitq
>$< e Local vs. Global context
X'i—]_ X@ X'L-l—]_
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Questions?



