CS769 Advanced NLP Morphology & Sequence Labeling

Junjie Hu

Slides adapted from Luke, Yulia, Bob <u>https://junjiehu.github.io/cs769-fall23/</u>

Goals for Today

- **Subword** Tokenization: BPE
- (Generative) Sequence Labeling: Hidden Markov Model
- (Discriminative) Sequence Labeling: Conditional Random Field

Levels of Linguistic Knowledge

Phonetics	The study of the sounds of human language	s ph	speech nonetics	text
Phonology	The study of sound systems in human language	ph	onology	orthography
Morphology	The study of the formation and internal structure of words		morphol lexem	ogy es
Syntax	The study of the formation and internal structure of sentences	"shallower"	synta	×
Semantics	The study of the meaning of sentences	"deeper"	semant	ics
Pragmatics	The study of the way sentences with their semantic meanings are used for particular communicative goals		discou	rse

Morphology & Word Tokenization

Tokenization (Example)

Input raw text

Dr. Smith said tokenization of English is "harder than you've thought." When in New York, he paid \$12.00 a day for lunch and wondered what it would be like to work for AT&T or Google, Inc.

Output from Stanford Parser with Part-of-Speech tags: <u>http://nlp.stanford.edu:8080/parser/index.jsp</u>

Dr./NNP Smith/NNP said/VBD tokenization/NN of/IN English/NNP is/VBZ ``/`` harder/JJR than/IN you/PRP 've/VBP thought/VBN ./. ''/'' When/WRB in/IN New/NNP York/NNP ,/, he/PRP paid/VBD \$/\$ 12.00/CD a/DT day/NN for/IN lunch/NN and/CC wondered/VBD what/WP it/PRP would/MD be/VB like/JJ to/TO work/VB for/IN AT&T/NNP or/CC Google/NNP ,/, Inc./NNP ./.

Subword Tokenization

- Neural systems typically use a **relatively small fixed** vocabulary
- Real world contains many words
 - New words all the time
 - For morphologically rich languages, even more so
 - But most words are rare (Zipf's Law)
- Note that rare words do not have good corpus statistics
- So, tokenize words into more frequent subword segments

Unsupervised Subword Algorithms

- Use the data to tell us how to tokenize
- Three common algorithms:
 - Byte-Pair Encoding (BPE) [Sennrich et al., 2016]
 - WordPiece [Schuster and Nakajima, 2012]
 - Unigram language modeling tokenization (Unigram) [Kudo, 2018]
- Learnable tokenizer:
 - Training: takes a raw training corpus and induces a vocabulary
 - Segmentation: tokenizes a raw test sentence according to the induced vocabulary

BPE: <u>https://github.com/rsennrich/subword-nmt</u> SentencePiece: <u>https://github.com/google/sentencepiece</u>

Byte-Pair Encoding

- Add a special end-of-word symbol "___" (U+2581) or </w> at the end of each word in training corpus
- Convert words into a set of characters, create an initial vocabulary
- Iteratively merge the most frequent pair of adjacent tokens for k times

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

 $V \leftarrow$ all unique characters in C # initial set of tokens is characters for i = 1 to k do # merge tokens til k times $t_L, t_R \leftarrow$ Most frequent pair of adjacent tokens in C $t_{NEW} \leftarrow t_L + t_R$ # make new token by concatenating $V \leftarrow V + t_{NEW}$ # update the vocabulary Replace each occurrence of t_L, t_R in C with t_{NEW} # and update the corpus return V

Example — training corpus:

low low low low low est lowest newer newer newer newer newer newer newer wider wider new new

3 wider_

2 new_

CO	r	p	us

5 low __
2 lowest__
6 newer__
3 wider__
2 new__

Merge er to er

corpus

- 5 low_ 2 lowest_ 6 newer_
- 3 wider_
- 2 new_

vocabulary

_, d, e, i, l, n, o, r, s, t, w

vocabulary
_, d, e, i, l, n, o, r, s, t, w, er

corp	pus	vocabulary
5	l o w	_, d, e, i, l, n, o, r, s, t, w, er
2	lowest_	
6	n e w er _	
3	wider_	
2	n e w	
Mei	rge er _ to er_	
cor	pus	vocabulary
5	low	_, d, e, i, l, n, o, r, s, t, w, er, er_
2	lowest_	
6	n e w er_	
3	wider_	
2	n e w	

, d, e, i, l, n, o, r, s, t, w, er, er

, d, e, i, l, n, o, r, s, t, w, er, er, ne

corpus

vocabulary

vocabulary

- 5 low_
- 2 lowest_
- 6 newer_
- 3 wider_
- 2 new_

Merge n e to ne

corpus

- 5 low_
- 2 lowest_
- 6 ne w er_
- 3 wider_
- 2 ne w _

12

• The next merges are:

 Merge
 Current Vocabulary

 (ne, w)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new

 (l, o)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo

 (lo, w)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low

 (new, er_)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low, newer_

 (low, _)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low, newer_, low_

+: Usually include frequent words,

and frequent subwords which are often morphemes, e.g., -est or -er

Syntax & Sequence Labeling

Sequence labeling problems

- Map a sequence of words to a sequence of labels
 - Part-of-speech tagging (Church, 1988; Brants, 2000)
 - Named entity recognition (Bikel et al., 1990)
 - Text chunking and shallow parsing (Ramshaw and Marcus, 1995)
 - Word alignment of parallel text (Vogel et al., 1996)
 - Compression (Conroy and O'Leary, 2001)
 - Acoustic models, discourse segmentation, etc.

Part of Speech Tagging

• Penn treebank tagset (Marcus et al., 1993)

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating conjunction	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg present	eat
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/ subordin-conj	of, in, by	RBR	comparative adverb	faster	WRB	wh-adverb	how, where
JJ	adjective	yellow	RBS	superlaty, adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	**	left quote	' or "
LS	list item marker	1, 2, One	TO	"to"	to	**	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), $\}, >$
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	.1?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	: ;

POS tagging (Example)

- System outputs:
 - The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
 - There/EX are/VBP 70/CD children/NNS there/RB
 - Preliminary/JJ findings/NNS were/VBD reported/VBN in/IN today/NN 's/POS New/NNP England/NNP Journal/NNP of/ IN Medicine/NNP ./.

Universal Dependencies for All Languages

Universal Dependencies

Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological features, and syntactic dependencies) across different human languages. UD is an open community effort with over 300 contributors producing more than 150 treebanks in 90 languages. If you're new to UD, you should start by reading the first part of the Short Introduction and then browsing the annotation guidelines.

- Short introduction to UD
- UD annotation guidelines
- More information on UD:
 - How to contribute to UD
 - Tools for working with UD
 - Discussion on UD
 - <u>UD-related events</u>
- Query UD treebanks online:
 - <u>SETS treebank search</u> maintained by the University of Turku
 - <u>PML Tree Query</u> maintained by the Charles University in Prague
 - Kontext maintained by the Charles University in Prague
 - · Grew-match maintained by Inria in Nancy
 - INESS maintained by the University of Bergen
- Download UD treebanks

Open class words	Closed class words	Other
ADJ	ADP	PUNCT
ADV	AUX	SYM
INTJ	CCONJ	X
NOUN	DET	
PROPN	NUM	
VERB	PART	
	PRON	
	SCONJ	

Sequence labeling as text classification

- Generative Model: Learn joint probability P(X,Y)
 - Hidden Markov Models

$$\hat{Y} = \arg \max P(x_1 \cdots x_n, y_1 \cdots y_n)$$
$$\begin{array}{c} y_1 \cdots y_n \\ \forall y_i \in \mathcal{C} \end{array}$$

- **Discriminative** Model: Learn conditional probability P(Y|X)
 - Conditional Random Fields
 - Neural network-based methods

$$\hat{Y} = \arg\max_{Y} P(Y|X)$$

Both trained via Maximum Likelihood Estimation

Hidden Markov Model (Sequential Version of Naive Bayes)

Classic Solution: HMMs

• We want a model of unobservable (hidden) sequences y and observations x

where $y_0 = \text{START}$ and we call q(y'|y) the transition distribution and e(x|y) the emission (or observation) distribution.

Assumptions:

- Tag/state sequence is generated by a Markov model
- Words are chosen independently, conditioned only on the tag/state
- These are totally broken assumptions: why?

Tag predictions depends on context

- Time flies like an arrow
- Fruit flies like a banana

HMM Learning and Inference

- Learning by maximum likelihood estimation: transition q(y'|y) and emissions e(x|y)

$$p(x_1...x_n, y_1...y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1}) e(x_i|y_i)$$

- Inference (linear time in sentence length!)
 - Viterbi:

$$y* = \underset{y_1 \dots y_n}{\operatorname{argmax}} p(x_1 \dots x_n, y_1 \dots y_{n+1})$$

where $y_{n+1} = \operatorname{STOP}$

• Forward Backward:

$$p(x_1 \dots x_n, y_i) = \sum_{y_1 \dots y_{i-1}} \sum_{y_{i+1} \dots y_n} p(x_1 \dots x_n, y_1 \dots y_n)$$

Learning: Maximum Likelihood

- Supervised Learning
 - Assume m fully labeled training examples:

$$\{(x^{(i)}, y^{(i)}) | i = 1 \cdots m\}$$

where
$$x^{(i)} = x_1 \cdots x_n$$
 and $y^{(i)} = y_1 \cdots y_n$

• What's the maximum likelihood estimate?

$$p(x_1...x_n, y_1...y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1}) e(x_i|y_i)$$

$$q_{ML}(y_i|y_{i-1}) e_{ML}(x_i|y_i)$$

Learning: Maximum Likelihood

• MLE: counting the co-occurrence of the event

$$q_{ML}(y_i|y_{i-1}) = \frac{c(y_{i-1}, y_i)}{c(y_{i-1})} \qquad e_{ML}(x|y) = \frac{c(y, x)}{c(y)}$$

- Will these estimates be high quality?
 - Which is likely to be more sparse, q or e?
 - The emission function, because c(y, x) is more likely to have sparse values.
- Can use all the same smoothing tricks we used for countingbased language models!
- Other approaches: Map low-frequency words to a small, finite set of units (e.g., prefixes, word classes), and run MLE on new sequences

Inference (Decoding)

• Problem: find the most likely (Viterbi) sequence under the model

$$y* = \underset{y_1...y_n}{\operatorname{argmax}} p(x_1...x_n, y_1...y_{n+1})$$

• Given model parameters, we can score any sequence pair

NNP	VBZ	NN	NNS	CD	NN
Fed	raises	interest	rates	0.5	percent

 In principle, we can list all possible tag sequences, score each one, and pick the best one (a.k.a. the Viterbi state sequence)

NNP VBZNN NNSCDNNiogP = -23NNPNNSNNNNSCDNNiogP = -29NNPVBZVBNNSCDNNiogP = -27

The State Lattice/Trellis: Viterbi

Dynamic Programming!

- Focus on max, consider special case of n=2
- Define $\pi(i, y_i)$ to be the max score of a sequence of length i ending in tag y_i

 $\max_{y_1,y_2} q(STOP|y_2)q(y_2|y_1)e(x_2|y_2)q(y_1|START)e(x_1|y_1)$

- $= \max_{y_2} q(STOP|y_2) e(x_2|y_2) \max_{y_1} q(y_1|START) q(y_2|y_1) e(x_1|y_1)$
- $= \max_{y_2} q(STOP|y_2)e(x_2|y_2)\pi(2,y_2)$ given that $\pi(2,y_2) = \max_{y_1} q(y_1|START)q(y_2|y_1)e(x_1|y_1)$
- What about the general case? (Consider n=3, etc...)

Dynamic Programming!

- General case
- Define $\pi(i,y_i)$ to be the max score of a sequence of length i ending in tag y_i

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

=
$$\max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \max_{y_1 \dots y_{i-2}} p(x_1 \dots x_{i-1}, y_1 \dots y_{i-1})$$

=
$$\max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \quad \pi(i-1, y_{i-1})$$

We now have an efficient algorithm. Start with *i=0* and work your way to the end of the sentence!

 $\pi(i, y_i) = \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i - 1, y_{i-1})$

 $\pi(i, y_i) = \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i - 1, y_{i-1})$

 $\pi(i, y_i) = \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i - 1, y_{i-1})$

 $\pi(i, y_i) = \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i - 1, y_{i-1})$

Fruit Flies Like Bananas

Fruit Flies Like Bananas

Fruit Flies Like Bananas

Fruit Flies Like Bananas

 $bp(i, y_i) = \arg \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i - 1, y_{i-1})$ Why is this not a greedy algorithm? Why does this find max P(.)?

Viterbi Algorithm

• Dynamic programming (for all *i*)

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

• Iterative computation

$$\pi(0, y_0) = \begin{cases} 1 \text{ if } y_0 == START \\ 0 \text{ otherwise} \end{cases}$$

For *i* = 1 ... n:

$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i-1, y_{i-1})$$

• Store back pointers:

$$bp(i, y_i) = \arg\max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i - 1, y_{i-1})$$

• What is the final solution? bp(n+1, STOP)

Viterbi Algorithm: Time complexity

- Linear in sentence length n
- Polynomial in the number of possible tags ${\cal K}$

$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i-1, y_{i-1})$$

iterate over all possible tags

• Specifically:

 $O(n|\mathcal{K}|)$ entries in $\pi(i, y_i)$ $O(|\mathcal{K}|)$ time to compute each $\pi(i, y_i)$

• Total runtime:

$$O(n|\mathcal{K}|^2)$$

Conditional Random Fields (Sequential Version of Logistic Regression)

Recap: Logistic Regression
(Log Linear Models)
Text classification:
$$X = \{x_1 \cdots, x_n\}, y \in \{1 \cdots C\}$$

 $F(X, y = c)$ Scoring function
 $P(y = c|X) = \frac{\exp(w_c^T f(X) + b_c)}{\sum_k \exp(w_k^T f(X) + b_k)}, \quad w_c, f(X) \in \mathbb{R}^d$
 $Z(X)$ Normalization constant
or partition function

• "Log-linear" assumption:

٠

• The features of the input is "log-linear" to the output

$$\log P(y = c | X) = F(y = c, X) - \log Z(X)$$

• Very flexible to include hand-crafted features (or learned features by neural networks)

Linear chain Conditional Random Fields ("Log-Linear" 1st order Sequential Model)

• Sequence labeling $X = \{x_1 \cdots x_n\}, Y = \{y_1 \cdots y_n, \text{STOP}\}$:

$$\begin{split} P(Y|X) &= \frac{1}{Z(X)} \exp\left(\sum_{i=2}^{n+1} \lambda \cdot q(y_{i-1}, y_i, X) + \sum_{i=1}^{n} \mu \cdot g(y_i, X)\right) \\ Z(X) &= \sum_{Y} \exp(F(Y, X)) & \text{d}_1 \text{ features scoring each scoring transitions}} & \text{d}_2 \text{ features scoring each state w/ input sequence} \\ F(Y, X) &= w \cdot f(Y, X) = \sum_{i=1}^{n} w \cdot f(y_i, y_{i+1}, X), \quad w, f(Y, X) \in \mathbb{R}^d \\ f(y_i, y_{i+1}, X) &= [q(y_i, y_{i+1}, X); \quad g(y_i, X)] \\ w &= [\lambda; \ \mu], \lambda \in \mathbb{R}^{d_1}, \mu \in \mathbb{R}^{d_2} \end{split}$$

ICML "test-of-time" paper: Lafferty et al. 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data 42

CRF: Learning

• Learning: maximize the log-likelihood over the training data

$$\mathcal{L}(w) = \sum_{(X,Y)\sim\mathcal{D}_{\text{train}}} \log P(Y|X)$$

$$= \sum_{(X,Y)\sim\mathcal{D}_{\text{train}}} w^{\top} f(Y,X) - \log Z(X)$$

$$w^{*} = \arg \max_{w} \mathcal{L}(w)$$

Sum over all possible outputs Y
for an input X — Brute force
solution: score n^c outputs
Can we do faster?

• **Update:** stochastic gradient descent to move in a direction that decreases the loss

$$w \leftarrow w - \alpha \frac{\partial \mathcal{L}(w)}{\partial w}$$

Dynamic Programing

• Learning: maximize the log-likelihood over the training data

$$\begin{aligned} \frac{\partial \log Z(X)}{\partial w_j} &= \mathbb{E}_Y \left[\sum_{i=1}^n f_j(y'_i, y'_{i+1}, X) \right] \\ &= \sum_{i=1}^n \mathbb{E}_{y'_i, y'_{i+1}} \left[P(y'_i, y'_{i+1} | X) f_j(y'_i, y'_{i+1}, X) \right] \\ &= \sum_{i=1}^n \sum_{y'_i, y'_{i+1}} P(y'_i, y'_{i+1} | X) f_j(y'_i, y'_{i+1}, X) \end{aligned}$$

 $P(y'_i, y'_{i+1}|X)$ can be computed by dynamic programing (forward-backward algorithm) — sum production algorithm, basically replace the max operation in Viterbi algorithm by sum operation

CRF Decoding: Viterbi

- Same as HMM decoding
- Viterbi (max-production algorithm): define the recursive function to compute the max value of the past partial sequence

$$Y^* = \arg \max_{Y} \log P(Y|X)$$

$$= \arg \max_{Y} w \cdot f(Y,X) - \log Z(X)$$
Decoding output
doesn't depend on the
second term
$$= \arg \max_{Y} \sum_{i=1}^{n} w \cdot f(y_i, y_{i+1}, X)$$

Feature functions

 Feature functions based on possible combination of words and tags, or other information such as POS tag (if given), whether the word is capitalized or not

$$q_1(y_{i-1}, y_i, X) = \begin{cases} 1 & \text{if } y_{i-1} = \text{OTHER and } y_i = \text{PERSON} \\ 0 & \text{otherwise} \end{cases}$$

$$g_2(y_i, X) = \begin{cases} 1 & \text{if } y_i = \text{PERSON and } x_i = \text{John} \\ 0 & \text{otherwise} \end{cases}$$

Feature values are not limited to just binary values, can be real-values too. Number of features can be tens of thousands or more.

Neural Conditional Random Fields

Neural CRF

• Rather than hand-crafted features, let's use NN to learn features.

Lample et. al 2016 Neural Architectures for Named Entity Recognition

Learned Feature

- P_{i,y_i} : the output of the bi-LSTM model followed by a linear projection layer. $P \in \mathbb{R}^{n \times C}$
- $A \in \mathbb{R}^{C+2 \times C+2}$: is the transition matrix from one state (tag) to the other state, including the start/end states (so C+2).

BILSTM-CNN CRF

• Use CNN to encode character embeddings

Ma et al. 2016. End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF

BILSTM-CNN CRF

- Use CNN to encode character embeddings
- Combine char and word embeddings together
- Further encode by BiLSTM model to learn the sequence representations
- Add a CRF layer

Ma et al. 2016. End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF

BERT-CRF

Replace BiLSTM with a BERT encoder

Comparison: Naive Bayes -> HMM Logistic Regression -> CRF

Recap: Naive Bayes & HMMs

• Naive Bayes (for text classification):

$$P(X, y) = P(X|y)P(y) = \left(\prod_{x_i} P(x_i|y)\right)P(y)$$

• Hidden Markov Models (for sequence labeling):

$$P(X,Y) = q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1})e(x_i|y_i)$$
$$= \left(q(\text{STOP}|y_n) \prod_{i=1}^n q(y_i|y_{i-1}) \left(\prod_{i=1}^n e(x_i|y_i)\right)\right)$$
$$= P(Y) \left(\prod_{i=1}^n P(x_i|y_i)\right)$$

HMMs \approx sequence version of Naive Bayes! Both are generative models.

Logistic Regression & CRF

• Logistic Regression (for text classification):

 $P(Y = c | X) \propto w_c \cdot F(X, Y = c)$

• Conditional Random Field (for sequence labeling):

$$P(Y|X) = \prod_{i=1}^{T} P(Y_i|X_i, Y_{i-1}), \quad Y_0 = [\text{START}]$$

$$P(Y_{i} = c | X_{i}, Y_{i-1}) \propto w_{c} \cdot f(Y_{i} = c, Y_{i-1}, X_{i})$$

= $\lambda \cdot q(Y_{i} = c, Y_{i-1}, X_{i}) + \mu \cdot g(Y_{i} = c, X_{i})$

CRF \approx sequence version of Logistic Regression! Both are discriminative models.

Generative v.s. Discriminative

- Generative Models:
 - Joint probability: P(X,Y)
 - Make prediction by $rgmax_Y P(X,Y)$
 - Can generate new samples (X,Y)
 - Examples: HMMs, Naive Bayes
- Discriminative Models:
 - Conditional probability: P(Y|X)
 - Can directly predict $rgmax_Y P(Y|X)$
 - Examples: Conditional Random Fields, Logistic Regression
- Both trained via Maximum Likelihood Estimation

Compare Naive Bayes and Logistic Regression

• Directed graphical model vs undirected graphical model

An open circle indicates that the variable is not generated by the model.

Compare HMM and linear chain CRF

• Directed graphical model vs undirected graphical model

An open circle indicates that the variable is not generated by the model.

Variants of CRF Layers

 $\begin{array}{c|cccc} Y_{i-1} & Y_i & Y_{i+1} \\ \hline & & & \\ X_{i-1} & X_i & X_{i+1} \end{array}$

1th order linear chain

• 2nd order linear chain

Local vs. Global context

Questions?