CS769 Advanced NLP
 Word Embeddings

Junjie Hu

Slides adapted from Noah, Yulia https://junjiehu.github.io/cs769-fall23/

Goals for Today

- Lexical Semantics and Distributional Semantics
- Count Based Word Methods (e.g, TF-IDF, PMI)
- Matrix Factorization (e.g., topic modeling)
- Word Embeddings (e.g., Skip-gram, CBOW)
- Evaluation (intrinsic and extrinsic)

How should we represent the meaning of the word?

Lexical Semantics

- How should we represent the meaning of the word?
- Words, lemmas, senses, definition

Oxford English Dictionary: https://www.oed.com/

Lemma pepper

- Sense 1: spice from pepper plant
- Sense 2: the pepper plant itself
- Sense 3: another similar plant (Jamaican pepper)
- Sense 4: plant with peppercorns (California pepper)
- Sense 5: capsicum (i.e., chili, paprika, bell pepper, etc)

Lexical Semantics

- How should we represent the meaning of the word?
- Words, lemmas, senses, definition
- Relationships between words or senses

1. Synonymity: same meaning, e.g., couch/sofa
2. Antonymy: opposite senses, e.g., hot/cold
3. Similarity: similar meanings, e.g., car/bicycle
4. Relatedness: association, e.g., car/gasoline
5. Superordinate/Subordinate: e.g., car/vehicle, mango/ fruit

Lexical Semantics

- How should we represent the meaning of the word?
- Words, lemmas, senses, definition
- Relationships between words or senses
- Taxonomy: abstract -> concrete

Taxonomy

- abstract -> concrete

Superordinate
Basic
Subordinate

Lexical Semantics

- How should we represent the meaning of the word?
- Words, lemmas, senses, definition
- Relationships between words or senses
- Taxonomy: abstract -> concrete
- Semantic frames and roles

Semantic Frame

- A set of words that denote perspectives or participants in an event
- Tom brought a book from Bill.
buyer event from the perspective of the buyer
- Bill sold a book to Tom.

seller event from the perspective of the seller

Mismatch

- Theories of language tend to view the data (words, sentences, documents) and abstractions over it as symbolic or categorical.
- Uses symbols to represent linguistic information
- Machine learning algorithms built on optimization rely more on continuous data.
- Uses floating-point numbers (vectors)

Documents and Words as Vectors

- A common thread: we derive the vectors from a corpus (collection of documents), with no annotation
- a.k.a. "unsupervised" or "self-supervised" learning
- Similar to language modeling
- Human-written raw sentences have already provide supervision on how words co-exist in a sentence.

Problems with Discrete Representations

- Too coarse: expert \leftrightarrow skillful
- Sparse
- Subjective
- Expensive
- Hard to compute word relationships
expert
skillful $\left[\begin{array}{lllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Distributional Hypothesis

"The meaning of a word is its use in the language"
[Wittgenstein 1943]
"You shall know a word by the company it keeps"
[Firth 1957]
"If A and B have almost identical environments we say that they are synonyms."
[Harris 1954]

Example

- What does "Ong Choy" mean?
- Suppose you see these sentences:
- Ong Choy is delicious sautéed with garlic
- Ong Choy is superb over rice
- Ong Choy leaves with salty sauces
- And you've also seen these:
- ... water spinach sautéed with garlic over rice
- Chard stems and leaves are delicious
- Collard greens and other salty leafy greens

Ong Choy \approx "Water Spinach"?

- Ong Choy is a leafy green like spinach, chard, or collard greens

Ong Choy: pronunciation of "䔨菜" in Cantonese

Model of Meaning Focusing on Similarity

- Each word = a vector
- Similar words are "nearby in space"
- the standard way to represent meaning in NLP

Approaches for encoding words as vectors

- Counting-based methods (e.g., TF-IDF)
- Matrix factorization (e.g., topic modeling)
- Brown clusters
- Word2vec (e.g., Skip-gram, CBOW)

Count-based Model

- A naive way to represent words in a corpus is to count their statistics.

Count-based Method

- Words are not independent, identically distributed (IID)!
- Predictable given history: n-gram/Markov models
- Predictable given other words in the document: topic models
- Let $\mathcal{Z}=\{1, \ldots, K\}$ be a set of "topic"/"themes" that will capture the interdependence of words in a document
- Usually these are not named or characterized in advance; they're just K different values with no a prior meaning.

Notation

- \mathbf{x} is the corpus
- \mathbf{x}_{c} is the c-th document in the corpus
- ℓ_{c} is the length of \mathbf{x}_{c} (in tokens)
- N is the total count of tokens in the corpus,
$N=\sum_{c=1}^{C} \ell_{c}$
- V, C are the vocabulary size and document size respectively.

Word-Document Matrix

- Let $\mathbf{A} \in \mathbb{R}^{V \times C}$ contain the statistics of association between words in the vocabulary and documents.
- Example: three documents

```
x
\mp@subsup{x}{2}{}}\mathrm{ : say yes for bananas
x}\mp@subsup{\boldsymbol{x}}{3}{}\mathrm{ : no bananas , we say
```

	1	2	3
bananas	1	1	1
1	1		
for	0	1	0
have	1	0	0
no	1	0	1
say	0	1	1
we	1	0	1
yes	1	1	0

For example, \mathbf{A} could be defined as a count matrix: count of word v in the c-th document

$$
[\mathbf{A}]_{v, c}=\operatorname{count}_{\boldsymbol{x}_{c}}(v)
$$

Note: \mathbf{A} could be other statistics like TF-IDF, PMI, more.

Encoding context with TF-IDF

- Problem for word-doc matrix: useless signal from the, they, and
- Solution: TF-IDF incorporates two terms that capture these conflicting constraints:
- Term frequency (tf): frequency of the word in the document

$$
\mathrm{tf}_{v, c}=\log (\operatorname{count}(v, c)+1)
$$

- Document frequency (df): number of documents that a term occurs in. Inverse document frequency (idf) just takes the inverse:

$$
\operatorname{idf}_{v}=\log \left(\frac{|N|}{|\{c \mid v \in c, \forall c \in C\}|}\right)
$$

Higher for words
that occur in fewer documents
where N is the no. of documents.

$$
[A]_{v, c}=\operatorname{tf}_{v, c} \cdot \operatorname{idf}_{v}
$$

TF-IDF Example

word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0
sweet	37	0

Example: 4 documents in red

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
Wit	0.049	0.044	0.018	0.022

Association Score

- Let $\frac{\operatorname{count}_{x}(v)}{N}$ be the percentage of word v in all docs, and count $_{\boldsymbol{x}_{c}}(v)$ be the word count in a doc c.
- By chance (under a unigram model), we expect that $\frac{\operatorname{count}_{x}(v)}{N}$ (percentage) of words in document c of length ℓ_{c} are the word v
- As document c may consist of different topics, is the occurrence of word v in c surprisingly high (or low), comparing to chance?
- Intuition: consider the ratio of observed frequency
$\left(\operatorname{count}_{\boldsymbol{x}_{c}}(v)\right)$ to "chance" $\left(\frac{\operatorname{count}_{\boldsymbol{x}}(v)}{N} \cdot \ell_{c}\right)$

Pointwise Mutual Information

- A common measurement is to define \mathbf{A} as positive pointwise mutual information:

$$
[\mathbf{A}]_{v, c}=\left[\log \frac{\operatorname{count}_{\boldsymbol{x}_{c}}(v)}{\frac{\operatorname{count}_{\boldsymbol{x}_{1: C}}(v)}{N} \cdot \ell_{c}}\right]_{+}=\left[\log \frac{N \cdot \operatorname{count}_{\boldsymbol{x}_{c}}(v)}{\operatorname{count}_{\boldsymbol{x}_{1: C}}(v) \cdot \ell_{c}}\right]_{+}
$$

where $[x]_{+}=\max (0, x)$.

$$
\begin{aligned}
{[\mathbf{A}]_{\text {bananas }, 1} } & =\log \frac{15 \cdot 1}{3 \cdot 6} \approx-0.18 \rightarrow 0 \\
{[\mathbf{A}]_{\text {for }, 2} } & =\log \frac{15 \cdot 1}{1 \cdot 4} \approx 1.32
\end{aligned}
$$

	1	2	3
bananas	1	0	1
for	0	1	0
have	1	0	0
no	1	0	1
say	0	1	1
we	1	0	1
yes	1	1	0

A: count matrix

	1	2	3
bananas	0	0	0
for have no say we			
yes			

A: PMI

A Nod to Information Theory

- Single event: pointwise mutual information for two random variables (r.v.) A and B taking values a and b :

$$
\begin{aligned}
\operatorname{PMI}(a, b) & =\log \frac{p(A=a, B=b)}{p(A=a) \cdot p(B=b)} \\
& =\log \frac{p(A=a \mid B=b)}{p(A=a)} \\
& =\log \frac{p(B=b \mid A=a)}{p(B=b)}
\end{aligned}
$$

- All possible events: average mutual information

$$
\operatorname{MI}(A, B)=\sum_{a, b} p(A=a, B=b) \cdot \operatorname{PMI}(a, b)
$$

- PMI, MI: amount of information each r.v. offers about the other.
- Recall entropy: amount of information or uncertainty in a single r.v.

Pointwise Mutual Information

- If a word v appears with nearly the same frequency in every doc, its row $[\mathbf{A}]_{v, *}$ is nearly 0 .
- If a word v appears only in doc c, their $\mathrm{PMI}\left([\mathbf{A}]_{v, c}\right)$ is large and positive
- PMI is very sensitive to rare occurrences: smooth the frequencies and filter rare words.
- PMI: tells us where a unigram model is most wrong.

	1	2	3
,	1	0	1
bananas	1	1	1
for	0	1	0
have	1	0	0
no	1	0	1
say	0	1	1
we	1	0	1
yes	1	1	0

A: count matrix

	1	2	3
bananas	0	0	0
for have no		1.32	
say			
we			

A: PMI

Reflection

- Can we use the rows of this association matrix \mathbf{A} as word vectors in a neural net model?
- Word embedding's dimension is linear to no. of document, since $\mathbf{A} \in \mathbb{R}^{V \times C}$. Too large \& not generalizable to other documents.
- Too many zeros for each word vector (sparse)
- Can we use the columns of this association matrix \mathbf{A} as document vectors in a neural net model?
- Yes. If we use a count function for \mathbf{A}, then this is essentially the bag-of-word representation for each document.
- Too many zeros for each document vector (sparse)

Matrix Factorization Based Method

Topic Models: Latent Semantic Indexing/Analysis

- LSA or LSI seeks to solve:

$$
\underset{v \times c}{\mathbf{A}} \approx \hat{\mathbf{A}}=\underset{v \times d}{\operatorname{M}} \times \underset{d \times d}{\operatorname{diag}}(\mathbf{s}) \times \underset{d \times c}{\mathbf{C}^{\top}}
$$

where \mathbf{M} is the word embedding matrix, \mathbf{C} is the document embedding matrix.

$$
[\mathbf{A}]_{0, c} \approx \sum_{i=1}^{d}\left[\mathbf{v}_{v}\right]_{i} \cdot\left[\mathrm{~s}_{i} \cdot\left[\mathbf{c}_{c}\right]_{i}\right.
$$

- This can be solved by singular value decomposition to \mathbf{A}, then truncating to d dimensions.
- M contains left singular vectors of \mathbf{A}
- C contains right singular vectors of \mathbf{A}
- \mathbf{s} are singular values of \mathbf{A} : nonnegative and conventionally organized in decreasing order.

Truncated Singular Value Decomposition

- Some element of \mathbf{s} are nearly 0 : delete these values to obtain a "low-rank" approximation of A

SVD:

truncated at d :

LSI/A Example

- $d=2$, project vectors of words and documents to two dimensional space.

Note: "no", "we" and "," are all in the exact same spot. Why?

- These words have the same statistics in this example, but this doesn't imply that they have the same semantic meaning.

Refection

- LSA creates a mapping of words and documents into the same low-dimensional space. Remove the reliance on no. of documents for word embeddings.
- \mathbf{A} is sparse and noisy. LSA "squeezes" the zeros, finds the relationship between words and documents through topics (features), and finds the best rank-d approximation to \mathbf{A}.
- More variants of LSA
- Probabilistic Latent Semantic Indexing (PLSI)
- Latent Dirichlet Allocation (LDA)
- Nonnegative Matrix Factorization (NMF)

Distributed Word Embeddings

Word Vector Models

- These models are designed to "guess" a word at position i given a word at a position in $\{i-w, \ldots, i-1\} \cup\{i+1, \ldots, i+w\}$
- "Pre-train" word vectors are used in other larger models (e.g., neural LM)

Word2vec

- Continuous bag of words (CBOW): $p(v \mid c)$
- Similar to feedforward neural LM w/o the feedforward layers in Lecture 3.
- Skip-gram: $p(c \mid v)$

Skip-gram

INPUT PROJECTION OUTPUT

Skip-gram Prediction

- Predict vs Count

INPUT
the cat sat on the mat

Skip-gram

context size $=2$

Skip-gram Prediction

- Predict vs Count

Skip-gram

context size $=2$

Skip-gram Prediction

- Predict vs Count

INPUT

Skip-gram

$w_{t}=$ sat \longrightarrow CLASSIFIER \longrightarrow| $w_{t-2}=$ the |
| :--- |
| $w_{t-1}=$ cat |
| $w_{t+1}=$ on |
| $w_{t+2}=$ the |

context size $=2$

Skip-gram Prediction

- Predict vs Count

INPUT

Skip-gram

$w_{t}=$ on \longrightarrow CLASSIFIER \longrightarrow| $w_{t-2}=$ cat |
| :--- |
| $w_{t-1}=$ sat |

context size $=2$

Skip-gram Prediction

- Predict vs Count

Skip-gram

context size $=2$

Skip-gram Prediction

- Predict vs Count

Skip-gram

context size $=2$

Skip-gram Prediction

- The same word can appear in different context.

Skip-gram

$$
w_{t}=\text { the } \longrightarrow \text { CLASSIFIER } \longrightarrow \begin{aligned}
& w_{t-2}=<\operatorname{start}_{-2}> \\
& w_{t-1}=<\operatorname{start}_{-1}> \\
& w_{t+1}=\text { cat }^{2} \\
& w_{t+2}=\text { sat }
\end{aligned}
$$

context size $=2$

Skip-gram Prediction

INPUT
PROJECTION OUTPUT
$W_{\text {the }}=\operatorname{LookUp}\left(W_{\text {in }}\right.$, "the" $\left.)\right) \in \mathbb{R}^{d}, W_{\text {in }} \in \mathbb{R}^{|V| \times d}$
$S=W_{\text {the }} \cdot W_{\text {out }} \in \mathbb{R}^{|V|}$
$P\left(W_{c} \mid W_{\text {the }}\right)=\operatorname{softmax}(S)$
$W_{c}=\left\{\right.$ "sat", "on", "mat", $\left.\left\langle\operatorname{end}_{+1}\right\rangle\right\}$

one-hot vector
look-up table of word embeddings

output word representations

Skip-gram

Skip-gram Objective

- For each word in the corpus

$$
\begin{gathered}
J(\Theta)=\prod_{t=1}^{T} \prod_{-m \leq j \leq m, j \neq 0} p\left(w_{t+j} \mid w_{t} ; \Theta\right) \\
J(\Theta)=-\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m, j \neq 0} \log p\left(w_{t+j} \mid w_{t} ; \Theta\right)
\end{gathered}
$$

Maximize the probability of any context window given the current center word

Skip-gram Objective

- For each word in the corpus

$$
\begin{array}{cl}
J(\Theta)=-\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m, j \neq 0} \log p\left(w_{t+j} \mid w_{t} ; \Theta\right) \\
& \begin{array}{l}
\text { dot product } \\
\text { (similarity) } \\
\text { between outside } \\
\text { and center word }
\end{array} \\
p\left(w_{t+j} \mid w_{t}\right)=p(o \mid c)=\frac{\exp \left(u_{o}^{\top} v_{c}\right)}{\sum_{i=1}^{V} \exp \left(u_{i}^{\top} v_{c}\right)} & \text { vectors }
\end{array}
$$

Notation simplification:
$o=$ index of outside (context) word
$c=$ index of center word $\left(w_{t}\right)$
$V=$ vocab size, V can be large 50K - 30M

Skip-gram w/ negative sampling

- $V=50 \mathrm{~K}-30 \mathrm{M}$, too large!

$$
p\left(w_{t+j} \mid w_{t}\right)=p(o \mid c)=\frac{\exp \left(u_{o}^{\top} v_{c}\right)}{\sum_{i=1}^{V} \exp \left(u_{i}^{\top} v_{c}\right)}
$$

- Negative sampling:
- Treat the center word and a neighboring context word as positive examples.
- Randomly sample other words in the lexicon to get negative samples.

Skip-gram w/ negative sampling

- Convert the task to binary classification rather than multiclass:

$$
P(o \mid c)=\frac{\exp \left(u_{0}^{T_{0}} v_{c}\right)}{\sum_{i=1}^{v p} \exp \left(u_{i}^{T} v_{c}\right)} \longrightarrow P(o \mid c)=\frac{1}{1+\exp \left(-u_{0}^{T} v_{c}\right)}=\sigma\left(u_{0}^{T} v_{c}\right)
$$

- New objective (single context word, k negative samples):

$$
\log P\left(o_{+} \mid c\right)+\sum_{i=1}^{k} \log \left(1-P\left(o_{i} \mid c\right)\right)
$$

Choosing negative samples

- Pick negative samples according to unigram frequency $P(w)$
- More common to choose according to:

$$
P_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w} \operatorname{count}(w)^{\alpha}}
$$

- $\alpha=0.75$ works well empirically
- Gives rare words slightly higher probability
- e.g., $P(a)=0.99, P(b)=0.01$

$$
\begin{aligned}
& P_{\alpha}(a)=\frac{0.999^{0.75}}{0.99^{0.75}+0.010^{0.75}}=0.97 \\
& P_{\alpha}(b)=\frac{0.010^{0.75}}{0.990^{\circ .75}+0.01^{0.75}}=0.03
\end{aligned}
$$

Graph for $\mathrm{x}^{\wedge}(3 / 4), \mathrm{x}$

Available dense embeddings

- Word2vec (Mikolov et a. 2013)
- https://code.google.com/archive/p/word2vec/
- GloVe (Pennington et al. 2014)
- http://nlp.stanford.edu/projects/glove/
- Fasttext (Bojanowsi et al. 2017)
- http://www.fasttext.cc/

Evaluation

— how well do word vectors capture embedding similarity?

Evaluating word vectors

- Intrinsic evaluation: test whether the representations align with our intuitions about word meaning.
- How well does cosine similarity of word embeddings correlate with human judgements?
- Completing analogies: $a: b<->c$?
- Extrinsic evaluation: test whether the representations are useful for downtream tasks, such as tagging, parsing, QA, ...
- Provide embeddings as input to the same classifier, how well does a model w/ pre-trained embeddings perform?

$A: B<->C: ?$

Country and Capital Vectors Projected by PCA

$A: B<->C: ?$

Other topics

- Bias in word embeddings (gender bias)
- Multilingual word embeddings
- Pre-trained contextualized word embeddings (e.g., Elmo, BERT, Roberta)

Any Questions?

